Home>>Signaling Pathways>> Cell Cycle/Checkpoint>> Arp2/3 Complex>>Cytochalasin D

Cytochalasin D (Synonyms: NSC 209835)

Catalog No.GC13440

An inhibitor of actin polymerization, selective

Products are for research use only. Not for human use. We do not sell to patients.

Cytochalasin D Chemical Structure

Cas No.: 22144-77-0

Size Price Stock Qty
1mg
$220.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 4 publications

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1-3]:

Cell lines

HeLa, Vero, L, HEp2, and MDBK cells, SC-1 cells, Murine CT26 colorectal carcinoma cells

Preparation method

The solubility of this compound in DMSO is > 10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 ℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months.

Reacting condition

0.2–0.5 μg/ml

Applications

In HeLa, Vero, L, HEp2, and MDBK cells, cytochalasin D (0.2–0.5 μg/ml) induced sustained contraction (contracture), loss of microvilli, expression of endoplasmic contents (zeiosis), nuclear protrusion, and extension of cytoplasmic processes. Cells in G1 were most sensitive to CD; responsiveness decreased progressively during early S and is least in mid S through G2. CD inhibited transport of [14C]deoxyglucose in HeLa. In SC-1 cells, Cytochalasin D treatment severely disrupted network organization, increased the number of actin filament ends, and led to the formation of filamentous aggregates or foci composed mainly of actin filaments. Cytochalasin D (0.24~15 μg/mL, 16 h) inhibited CT26 tumor cell proliferation in time and dose dependent manner and induced significant CT26 cell apoptosis.

Animal experiment [3,4]:

Animal models

Murine CT26 tumor model, porcine coronary model

Dosage form

Intravenous injection, 50 mg/kg, every 3 days for 21 days

Application

Cytochalasin D (i.v., 50 mg/kg) in vivo treatment significantly inhibited tumor growth and prolonged the survival times in CT26 tumor-bearing mice. In porcine coronary model, Cytochalasin D (2 μg) resulted in less late lumen loss in low-dose. High-dose Cytochalasin D (20 μg) inhibited both late lumen loss and intimal area.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

[1]. Miranda A F, Godman G C, Deitch A D, et al. Action of cytochalasin D on cells of established lines[J]. The Journal of cell biology, 1974, 61(2): 481-500.

[2]. Schliwa M. Action of cytochalasin D on cytoskeletal networks[J]. The Journal of cell biology, 1982, 92(1): 79-91.

[3]. Huang F Y, Li Y N, Mei W L, et al. Cytochalasin D, a tropical fungal metabolite, inhibits CT26 tumor growth and angiogenesis[J]. Asian Pacific journal of tropical medicine, 2012, 5(3): 169-174.

[4].Salu K J, Bosmans J M, Huang Y, et al. Effects of cytochalasin D-eluting stents on intimal hyperplasia in a porcine coronary artery model[J]. Cardiovascular research, 2006, 69(2): 536-544.

Background

The cytochalasins are cell-permeable fungal metabolites that inhibit actin polymerization.[1],[2],[3],[4] This interferes with such diverse processes as cell movement, growth, phagocytosis, degranulation, and secretion.[5],[6],[7],[8] Cytochalasin D is a cell-permeable inhibitor that binds actin filaments, but not actin monomers, to inhibit polymerization at concentrations as low as 0.2 µM.2 In this way, it prevents the migration of tumor cells.[9]

Reference:
[1]. Brenner, S.L., and Korn, E.D. The effects of cytochalasins on actin polymerization and actin ATPase provide insights into the mechanism of polymerization. The Journal of Biological Chemisty 255(3), 841-844 (1980).
[2]. Lin, D.C., Tobin, K.D., Grumet, M., et al. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. Journal of Cell Biology 84, 455-460 (1980).
[3]. Ostlund, R.E., Jr., Leung, J.T., and Hajek, S.V. Regulation of microtubule assembly in cultured fibroblasts. Journal of Cell Biology 85, 386-391 (1980).
[4]. Pinder, J.C., and Gratzer, W.B. Structural and dynamic states of actin in the erythrocyte. Journal of Cell Biology 96(3), 768-775 (1983).
[5]. Flaumenhaft, R., Dilks, J.R., Rozenvayn, N., et al. The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood 105(10), 3879-3887 (2005).
[6]. Taheri-Talesh, N., Horio, T., Araujo-Bazán, L., et al. The tip growth apparatus of Aspergillus nidulans. Molecular Biology of the Cell 19, 1439-1449 (2008).
[7]. dos Santos, T., Varela, J., Lynch, I., et al. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6(9), 1-10 (2011).
[8]. Nightingale, T.D., White, I.J., Doyle, E.L., et al. Actomyosin II contractility expels von Willebrand factor from Weibel-Palade bodies during exocytosis. Journal of Cell Biology 194(4), 613-629 (2011).
[9]. Hayot, C., Debeir, O., Van Ham, P., et al. Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicology and Applied Pharmacology 211, 30-40 (2006).

Chemical Properties

Cas No. 22144-77-0 SDF
Synonyms NSC 209835
Chemical Name (3S,3aR,4R,6R,6aS,7E,10R,12S,13Z,15R,15aS)-3-benzyl-6,12-dihydroxy-4,10,12-trimethyl-5-methylene-1,11-dioxo-2,3,3a,4,5,6,6a,9,10,11,12,15-dodecahydro-1H-cycloundeca[d]isoindol-15-yl acetate
Canonical SMILES O[C@@H]1[C@@H](/C=C/C[C@@H](C)C2=O)[C@]3([C@@H](C=C[C@]2(C)O)OC(C)=O)[C@@H]([C@@H](C)C1=C)[C@H](CC4=CC=CC=C4)NC3=O
Formula C30H37NO6 M.Wt 507.63
Solubility 10mg/mL in dichloromethane,100 mg/ml in DMSO Storage Store at -20°C, protect from light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 1.9699 mL 9.8497 mL 19.6994 mL
5 mM 0.394 mL 1.9699 mL 3.9399 mL
10 mM 0.197 mL 0.985 mL 1.9699 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Related Video

    Cytochalasin D- GlpBio

Reviews

Review for Cytochalasin D

Average Rating: 5 ★★★★★ (Based on Reviews and 22 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Cytochalasin D

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.