Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Autophagy>>FK866 (APO866)

FK866 (APO866) (Synonyms: K 22.175)

Catalog No.GC14308

Inhibitor of nicotinamide phosphoribosyltransferase

Products are for research use only. Not for human use. We do not sell to patients.

FK866 (APO866) Chemical Structure

Cas No.: 658084-64-1

Size Price Stock Qty
10mM (in 1mL DMSO)
$43.00
In stock
5mg
$43.00
In stock
10mg
$80.00
In stock
25mg
$188.00
In stock
50mg
$272.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Kinase experiment [1]:

Preparation Method

To determine the IC50 of inhibitors, 5 μl FK866 (APO866) solutions (containing 10% DMSO) with various concentrations were added into 96-well plate. The plate was incubated at 37 ℃ for 5 min after addition of 16.5 μl reaction buffer containing NAMPT. The enzyme reactions were initiated by 4.5 μl NAM (1.11 μM) following NMN measurement as described above. The IC50 values were determined by non-linear fitting of the concentration-dependent curves with the four-parameter IC50 logistic equation.

Reaction Conditions

37℃ for 5 min

Applications

IC50 of FK866 (APO866) on NAMPT activity is 1.60±0.32 nmol/L

Cell experiment [1]:

Cell lines

HepG2

Preparation Method

Cells were seeded in 96-well plate and starved for over 12 h with serum-free DMEM at 60~70% confluency, then treated with FK866 (APO866) or vehicle for 24 h to 72 h according to experiment requirements.10 μl CCK-8 solution was added to the culture medium and incubated at 37 °C for 1 h. The absorbance at 450 nm (A450) was detected by a plate reader.

Reaction Conditions

48 h

Applications

IC50 of FK866 (APO866) on HepG2 cells is 2.21±0.21 nmol/L.

Cell experiment [2]:

Cell lines

RAW 264.7 and MODE-K cells

Preparation Method

Cells were stimulated with ultrapure 100ng/mL lipopolysaccharide (LPS) or 1µg/mL flagellin followed by incubation with or without 200nM FK866 (APO866) overnight. Supernatants were harvested and protein was extracted with NE-PER containing protease and phosphatase inhibitors and stored at -80℃ until further workup.

Reaction Conditions

200nM FK866 (APO866) overnight

Applications

FK866 (APO866)treatment strongly reduced NF-κB phosphorylation consequent to LPS treatment.

Animal experiment [2]:

Animal models

8-week-old female wild-type (WT) or Rag1tm1Mom/J (Rag1−/−) mice

Preparation method

Acute colitis was induced in mice with 3.5% or 3% dextran sulfate sodium ad libitum for 5 consecutive days, followed by a tap water period until end of experiments. Control mice received tap water during the study period. Mice were injected intraperitoneally with 10mg/kg bodyweight FK866 (APO866) or vehicle control twice daily until termination of experiments.

Dosage form

Intraperitoneally with 10mg/kg FK866 (APO866)

Applications

FK866 (APO866) significantly ameliorated all features of DSS-induced colitis in Rag1−/− mice.

References:

[1]. Zhang SL, Xu TY, Yang ZL, Han S, Zhao Q, Miao CY. Crystal structure-based comparison of two NAMPT inhibitors. Acta Pharmacol Sin. 2018 Feb;39(2):294-301.

[2]. Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018 Oct;67(10):1813-1823.

Background

FK866 (APO866) is an inhibitor of nicotinamide phosphoribosyltransferase (NMPRTase). FK866 (APO866) protects against experimental colitis and colitis?associated tumorigenesis by suppression of activated leukocytes particularly macrophages, inflammatory monocytes and T cells. FK866(APO866) also reduced inflammatory responses of lamina propria mononuclear cells (LPMNC) from colonic biopsies of patients with IBD to a comparable extent as dexamethasone [1].

The IC50 of FK866 (APO866) on NAMPT activity is 1.60±0.32 nmol/L [2].. IC50 of FK866 (APO866) on HepG2 cells is 2.21±0.21 nmol/L. FK866 (APO866) treatment strongly reduced NF-κB phosphorylation consequent to LPS treatment. Inhibition of NAMPT by FK866, or inhibition of SIRT by nicotinamide decreased proliferation and triggered death of 293T cells involving the p53 acetylation pathway [3].. FK866 (APO866) potently inhibited NAMPT activity as demonstrated by reduced mucosal NAD, resulting in reduced abundances and activities of NAD-dependent enzymes including PARP1, Sirt6 and CD38, reduced nuclear factor kappa B activation, and decreased cellular infiltration by inflammatory monocytes, macrophages and activated T cells [1].

FK866 (APO866) significantly ameliorated all features of DSS-induced colitis in Rag1?/? mice and effectively suppresses inflammatory innate immune responses in the absence of adaptive immunity. FK866 (APO866) significantly reduced chemokine and cytokine release, many of those which are macrophage/monocyte derived. Remarkably, the observed suppression was in the range or even superior to well-established anti-inflammatory compounds such as dexamethasone and infliximab [1].

References:
[1].Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018 Oct;67(10):1813-1823.
[2].Zhang SL, Xu TY, Yang ZL, Han S, Zhao Q, Miao CY. Crystal structure-based comparison of two NAMPT inhibitors. Acta Pharmacol Sin. 2018 Feb;39(2):294-301.
[3].Thakur BK, Dittrich T, Chandra P, Becker A, Lippka Y, Selvakumar D, Klusmann JH, Reinhardt D, Welte K. Inhibition of NAMPT pathway by FK866 activates the function of p53 in HEK293T cells. Biochem Biophys Res Commun. 2012 Aug 3;424(3):371-7.

Chemical Properties

Cas No. 658084-64-1 SDF
Synonyms K 22.175
Chemical Name (E)-N-[4-(1-benzoylpiperidin-4-yl)butyl]-3-pyridin-3-ylprop-2-enamide
Canonical SMILES C1CN(CCC1CCCCNC(=O)C=CC2=CN=CC=C2)C(=O)C3=CC=CC=C3
Formula C24H29N3O2 M.Wt 391.51
Solubility ≥ 19.6mg/mL in DMSO, ≥ 49.6 mg/mL in EtOH Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.5542 mL 12.7711 mL 25.5421 mL
5 mM 0.5108 mL 2.5542 mL 5.1084 mL
10 mM 0.2554 mL 1.2771 mL 2.5542 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for FK866 (APO866)

Average Rating: 5 ★★★★★ (Based on Reviews and 30 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for FK866 (APO866)

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.