Home>>Signaling Pathways>> Others>>Metformin HCl

Metformin HCl (Synonyms: 1,1-Dimethylbiguanide hydrochloride)

Catalog No.GC17443

Metformin HCl (1,1-Dimethylbiguanide hydrochloride) inhibits the mitochondrial respiratory chain in the liver, leading to activation of AMPK, enhancing insulin sensitivity for type 2 diabetes research.

Products are for research use only. Not for human use. We do not sell to patients.

Metformin HCl Chemical Structure

Cas No.: 1115-70-4

Size Price Stock Qty
10mM (in 1mL DMSO)
$37.00
In stock
10g
$50.00
In stock
50g
$120.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Kinase experiment [1]:

AMPK assay

For the AMPK assay, cells were seeded in six-well plates at 1.5 × 106 cells/well in DMEM containing 100 U/ml penicillin, 100 μg/ml streptomycin, 10% FBS, 100 nM insulin, 100 nM dexamethasone, and 5 μg/ml transferrin for 4 hours. Cells were then cultured in serum-free DMEM for 16 hours followed by treatment for 1 hour or 7 hours with control medium, 5-amino-imidazole carboxamide riboside (AICAR), or metformin at concentrations indicated. For a 39-hour treatment, cells for both control and metformin (10 or 20 μM) groups were cultured in DMEM plus 5% FBS and 100 nM insulin, and the fresh control and metformin-containing medium were replaced every 12 hours (last medium change was 3 hours before harvest). After treatment, the cells were directly lysed in digitonin-containing and phosphatase inhibitor–containing buffer A , followed by precipitation with ammonium sulfate at 35% saturation. AMPK activity was determined by measurement of phosphorylation of a synthetic peptide substrate, SAMS (HMRSAMSGLHLVKRR).

Cell experiment [1]:

Cell lines

Rat primary hepatocytes

Preparation method

The solubility of this compound in DMSO is limited. General tips for obtaining a higher concentration: Please warm the tube at 37℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months.

Reacting condition

10, 20, 500 μM, 2 mM; 39h;

Applications

Metformin activated AMPK in primary hepatocytes. Moreover, Metformin (2 mM, 3 hours) stimulated AMPK activity in skeletal muscle in association with induction of glucose uptake. Metformin (500 μM) reduced hepatic SREBP-1 expression in rat hepatocytes.

Animal experiment:

Animal models

Male C57BL/6 mice model;

Dosage form

200 mg/kg, oral gavage, twice daily for 5 days; or 250 mg/kg, intraperitoneal injection, for 3 days

Applications

Acetyl-CoA carboxylase (ACC) activity were reduced in metformin-treated rats [1]. Moreover, metformin required LKB1 in the liver to lower blood glucose levels [2].

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

1. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J. and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108, 1167-1174

2. Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M. and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 310, 1642-1646

Background

Metformin HCl is one of the most effective and widely used therapeutics for treatment of type 2 diabetes. It selectively lowers the hepatic gluconeogenesis without rising insulin production, causing weight gain or hypoglycemia. [1]

AMPK (5'AMP-activated protein kinase) acts as a metabolic master switch regulating several intracellular systems including the cellular uptake of glucose, the β-oxidation of fatty acids and the biogenesis of GLUT4 (glucose transporter 4) and mitochondria.

In hepatocytes, AMPK was activated by metformin, followed by decreased ACC (acetyl-CoA carboxylase) activity, induction of fatty acid oxidization and suppression of lipogenic enzyme expression.[2] Metformin also inhibited mGPD (mitochondrial lycerophosphate dehydrogenase),a redox shuttle enzyme, leading to an altered hepatocellular redox state, decreased conversion of lactate and reduced hepatic gluconeogenesis. [1]

In rats treated with metformin, hepatic expression of SEREP-1 mRNAs/protein and activity of ACC were reduced. [2] In metformin treated mice, LKB1 in liver was essential for the ability of metformin to reduce blood glucose [3]. In ASO (Antisense oligonucleotide) knockdown of hepatic mGOD in rats, the phenotype was similar to chronic metformin treatment. It abolished mefromin-induced cytosolic redox state, reduction in plasma glucose concentration and EGP inhibition. [1]

References:
1. Madiraju AK, Erion DM, Rahimi Y et al.  Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.  Nature. 2014 Jun 26;510(7506):542-6.
2. Zhou G, Myers R, Li Y et al.  Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167-74.
3. Shaw RJ, Lamia KA, Vasquez D et al.  The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005 Dec 9;310(5754):1642-6.

Chemical Properties

Cas No. 1115-70-4 SDF
Synonyms 1,1-Dimethylbiguanide hydrochloride
Chemical Name 3-(diaminomethylidene)-1,1-dimethylguanidine;hydrochloride
Canonical SMILES CN(C)C(=N)N=C(N)N.Cl
Formula C4H12ClN5 M.Wt 165.62
Solubility ≥ 8.3mg/mL in DMSO, ≥ 30.7mg/mL in Water Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 6.0379 mL 30.1896 mL 60.3792 mL
5 mM 1.2076 mL 6.0379 mL 12.0758 mL
10 mM 0.6038 mL 3.019 mL 6.0379 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Related Video

    Metformin HCl-GlpBio

Reviews

Review for Metformin HCl

Average Rating: 5 ★★★★★ (Based on Reviews and 17 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Metformin HCl

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.