Home>>Signaling Pathways>> GPCR/G protein>> CXCR>>Reparixin

Reparixin

Catalog No.GC12849

An allosteric inhibitor of CXCR1 and CXCR2

Products are for research use only. Not for human use. We do not sell to patients.

Reparixin Chemical Structure

Cas No.: 266359-83-5

Size Price Stock Qty
10mM (in 1mL DMSO)
$86.00
In stock
2mg
$55.00
In stock
5mg
$112.00
In stock
10mg
$193.00
In stock
25mg
$336.00
In stock
50mg
$521.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 1 publications

Product Documents

Quality Control & SDS

View current batch:

Protocol

Kinase experiment [1]:

Binding assays

Isolated PMNs (107×mL) were resuspended in RPMI 1640 and incubated at 37℃ for 15 min in the presence of repertaxin (1 mM) or vehicle. After incubation cells were resuspended (2×107/mL) in binding medium (RPMI 1640 containing 10 mg/ml BSA, 20 mM HEPES, and 0.02% NaN3) in the presence of repertaxin or vehicle. Aliquots of 0.2 nM of [125I]CXCL8 and serial dilutions of unlabeled CXCL8 were added to 106 cells in 100 μL of binding medium and incubated at room temperature for 1 hr under gentle agitation. Unbound radioactivity was separated from cell-bound radioactivity by centrifugation through anoil gradient (80% silicon and 20% paraffin) on a microcentrifuge. Nonspecific binding was determined by a 200-fold molar excess of unlabeled CXCL8. Scatchard analysis was performed with the LIGAND program.

Cell experiment [1]:

Cell lines

Human polymorphonuclear cells (PMN) and monocytes and rodent peritoneal PMN.

Preparation method

Soluble in DMSO. General tips for obtaining a higher concentration: Please warm the tube at 37℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months.

Reaction Conditions

45 min (human PMN), 1 h (rodent PMN), or 2 h (monocytes).

Applications

Repertaxin inhibits human PMN migration induced by CXCL8 and CXCL1 with IC50 values of 1 nM and 400 nM respectively, which are mediated by CXCR1 and CXCR2, respectively. Repertaxin also inhibits rodent PMN chemotaxis induced by CXCL1 and CXCL2.

Animal experiment [1]:

Animal models

Rat model of liver postischaemia RI.

Dosage form

3, 15, or 30 mg/kg; 15 min before reperfusion (i.v.) and 2 h after reperfusion (s.c.).

Applications

Repertaxin (15 mg/kg) inhibits PMN recruitment into reperfused livers by 90% and significantly reducesliver damage.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

[1]. Bertini R, Allegretti M, Bizzarri C, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A, 2004, 101(32): 11791-11796.

Background

Reparixin is a non-competitive allosteric inhibitor of CXCR1/2.

CXCR is a 7-transmembrane G protein-coupled receptor. CXCR plays a critical role in the development of different models of ALI Following engagement of this receptor, the Gbg-complex dissociates from the Gai-subunit and can activate phosphoinositide-3 kinase, different subtypes of phospholipase C and P-Rex-1. The downstream effectors of these molecules initiate a broad range of functional responses, including arrest from rolling, cytoskeletal rearrangement, cell polarization, chemotaxis, degranulation and respiratory burst.

Reperixin, specifically blocks CXCR1/2-mediated mouse and human neutrophil migration in vitro without affecting other receptors. Reparixin reduces ligand binding to human CXCR1 and CXCR2, calcium influx and downstream signalling in response to human CXCL8 and neutrophil recruitment into the liver in a mouse model of ischaemia-reperfusion injury. Reparixin reduced neutrophil recruitment and liver damage by approximately 30% and 80% in a model of ischaemiareperfusion injury.[1,2]

Reparixin reduced oligodendrocyte apoptosis, migration to the injury site of neutrophils and ED-1-positive cells. The best beneficial outcome of reparixin treatment will require 7-day administration either by i.p. route (15 mg/kg) or subcutaneous infusion via osmotic pumps (10 mg/kg), reaching a steady blood level of 8 μg/ml. Methylprednisolone are used as a reference drug, and such treatment reduced cytokine production but failed to affect the rate of hind limb recovery. [1,2]

References:
[1] A Zarbock, M Allegretti and K Ley.  Therapeutic inhibition of CXCR2 by Reparixin attenuates acute lung injury in mice. British Journal of Pharmacology (2008) 155, 357–364.
[2] Alfredo Gorio, Laura Madaschi, Giorgia Zadra et al.  Reparixin, an Inhibitor of CXCR2 Function, Attenuates Inflammatory Responses and Promotes Recovery of Function after Traumatic Lesion to the Spinal Cord. doi:10.1124/jpet.107.123679.

Chemical Properties

Cas No. 266359-83-5 SDF
Chemical Name (2R)-2-[4-(2-methylpropyl)phenyl]-N-methylsulfonylpropanamide
Canonical SMILES CC(C)CC1=CC=C(C=C1)C(C)C(=O)NS(=O)(=O)C
Formula C14H21NO3S M.Wt 283.39
Solubility ≥ 14.15 mg/mL in DMSO, ≥ 47.3 mg/mL in EtOH Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 3.5287 mL 17.6435 mL 35.2871 mL
5 mM 0.7057 mL 3.5287 mL 7.0574 mL
10 mM 0.3529 mL 1.7644 mL 3.5287 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for Reparixin

Average Rating: 5 ★★★★★ (Based on Reviews and 30 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Reparixin

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.