Home>>Signaling Pathways>> Tyrosine Kinase>> Ephrin Receptor>>ALW-II-41-27

ALW-II-41-27 (Synonyms: Eph receptor tyrosine kinase inhibitor;)

Catalog No.GC11134

A multi-kinase inhibitor

Products are for research use only. Not for human use. We do not sell to patients.

ALW-II-41-27 Chemical Structure

Cas No.: 1186206-79-0

Size Price Stock Qty
5mg
$217.00
In stock
10mg
$258.00
In stock
50mg
$722.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1]:

Cell lines

Non-small cell lung cancer (NSCLC) PC-9/ER, PC-9/ERC15, PC-9/ERC16 cell lines

Preparation Method

Four cell lines with acquired resistance to erlotinib were treated with ALW-II-41-27, NG-25, erlotinib, or DMSO for 72 hours, and cell viability was assessed by the MTT assay.

Reaction Conditions

1 µM;72 h

Applications

1 µM ALW-II-41-27 inhibited the proliferation of Erlotinib-resistant NSCLC cell lines and increased cell apoptosis. ALW-II-41-27 induced apoptosis was accompanied by an increase in caspase-3 and PARP and a decrease in the expression of anti-apoptotic proteins BCL-xL and MCL-1.

Animal experiment [2]:

Animal models

6-week-old athymic nude mice

Preparation Method

HCC827/ER or PC-9/ERC16 cells were injected with Matrigel into the hind flanks of 6-week-old athymic nude mice. Mice were randomized by body weight and tumor volume into treatment groups to receive 15 mg/kg of either erlotinib, ALW-II-41-27, or the vehicle alone twice daily via intraperitoneal injection.

Dosage form

15 mg/kg;14 days; i.p.

Applications

After 14 days of the treatment regimen, ALW-II-41-27 significantly inhibited growth of the erlotinib-resistant tumors.

References:

[1]. Amato KR, Wang S, et,al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016 Jan 15;76(2):305-18. doi: 10.1158/0008-5472.CAN-15-0717. Epub 2016 Jan 7. PMID: 26744526; PMCID: PMC4715957.

Background

ALW-II-41-27 is an Eph family tyrosine kinase inhibitor with an IC50 of 11 nM to inhibit Eph2[1].

ALW-II-41-27(1μM;72 h) inhibited the proliferation of Erlotinib-resistant NSCLC cell lines and increased cell apoptosis. ALW-II-41-27 induced apoptosis was accompanied by an increase in caspase-3 and PARP and a decrease in the expression of anti-apoptotic proteins BCL-xL and MCL-1[3]. ALW-II-41-27(200, 600 or 1,000 nM ALW-II-41-27; 24, 48 or 72 h) inhibited cervical cancer (CC) cell proliferation, migration and invasion by blocking the RhoA/ROCK pathway[4]. ALW-II-41-27 inhibited pY772-EphA2 and EphA2-Y772A decreased the inhibitory effect of ALW-II-41-27 on NPC cell proliferation[6]. Combined treatment with ALW-II-41-27 plus cetuximab reverted primary and acquired resistance to cetuximab, causing cell growth inhibition, inducing apoptosis and cell-cycle G1-G2 arrest[7].

ALW-II-41-27(15 mg/kg;14 days; i.p.) significantly inhibited growth of the erlotinib-resistant tumors[3]. Administration of ALW-II-41-27(15, 30 mg/kg;twice a day; i.p.)significantly inhibited H358 tumor growth in tumor-bearing mice. Histological analysis showed a significant increase in apoptosis in tumors treated with ALW-II-41-27 compared with those treated with NG-25 or the carrier, similar to the effect of genetic ablation of EPHA2[2]. ALW-II-41-27 (12.5, 25, 50, and 100 μg/kg; i.p.) decreased gastrointestinal motility and abdominal withdrawal reflex (AWR) scores, markedly reduced the levels of oxidative stress markers [4-hydroxy-2-nonenal (4-HNE), protein carbonyl, and 8-hydroxy-2-de-axyguanine (8-OHdG)] and proinflammatory cytokines (TNF-α, IL-6, IL-17, and ICAM-1), and remarkably increased the level of anti-inflammatory cytokine (IL-10) in serum and colon of Trichinella spiralis-infected mice[5].

References:
[1]. Choi Y, Syeda F, et,al. Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2009 Aug 1;19(15):4467-70. doi: 10.1016/j.bmcl.2009.05.029. Epub 2009 May 13. PMID: 19553108; PMCID: PMC2730633.
[2]. Amato KR, Wang S, et,al. Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest. 2014 May;124(5):2037-49. doi: 10.1172/JCI72522. Epub 2014 Apr 8. PMID: 24713656; PMCID: PMC4001547.
[3]. Amato KR, Wang S, et,al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016 Jan 15;76(2):305-18. doi: 10.1158/0008-5472.CAN-15-0717. Epub 2016 Jan 7. PMID: 26744526; PMCID: PMC4715957.
[4]. Li X, Li D, et,al.ALW-II-41-27, an EphA2 inhibitor, inhibits proliferation, migration and invasion of cervical cancer cells via inhibition of the RhoA/ROCK pathway. Oncol Lett. 2022 Apr;23(4):129. doi: 10.3892/ol.2022.13249. Epub 2022 Feb 18. PMID: 35251349; PMCID: PMC8895465.
[5]. Zeng L, Li K, et,al.A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-κB Signaling Pathways. Front Pharmacol. 2018 Mar 27;9:272. doi: 10.3389/fphar.2018.00272. PMID: 29662452; PMCID: PMC5890185.
[6]. Xiang YP, Xiao T, et,al. Y772 phosphorylation of EphA2 is responsible for EphA2-dependent NPC nasopharyngeal carcinoma growth by Shp2/Erk-1/2 signaling pathway. Cell Death Dis. 2020 Aug 27;11(8):709. doi: 10.1038/s41419-020-02831-0. PMID: 32848131; PMCID: PMC7449971.
[7]. Martini G, Cardone C, et,al. EPHA2 Is a Predictive Biomarker of Resistance and a Potential Therapeutic Target for Improving Antiepidermal Growth Factor Receptor Therapy in Colorectal Cancer. Mol Cancer Ther. 2019 Apr;18(4):845-855. doi: 10.1158/1535-7163.MCT-18-0539. Epub 2019 Mar 1. PMID: 30824612.

Chemical Properties

Cas No. 1186206-79-0 SDF
Synonyms Eph receptor tyrosine kinase inhibitor;
Chemical Name N-(5-((4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)carbamoyl)-2-methylphenyl)-5-(thiophen-2-yl)nicotinamide
Canonical SMILES CCN1CCN(CC2=C(C(F)(F)F)C=C(NC(C3=CC(NC(C4=CN=CC(C5=CC=CS5)=C4)=O)=C(C=C3)C)=O)C=C2)CC1
Formula C32H32F3N5O2S M.Wt 607.69
Solubility ≥ 102 mg/mL in DMSO, ≥ 60.8 mg/mL in EtOH Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 1.6456 mL 8.2279 mL 16.4558 mL
5 mM 0.3291 mL 1.6456 mL 3.2912 mL
10 mM 0.1646 mL 0.8228 mL 1.6456 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for ALW-II-41-27

Average Rating: 5 ★★★★★ (Based on Reviews and 30 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for ALW-II-41-27

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.