Home>>Peptides>>β-Amyloid 1-16 (Amyloid β-Protein (1-16))

β-Amyloid 1-16 (Amyloid β-Protein (1-16))

Catalog No.GC31129

β-Amyloid 1-16 (Amyloid β-Protein (1-16)) Chemical Structure

Size Price Stock Qty
1mg
$101.00
In stock
5mg
$358.00
In stock

Customer Reviews

Based on customer reviews.

Tel: (626) 353-8530 Email: sales@glpbio.com

Sample solution is provided at 25 µL, 10mM.

Quality Control

Quality Control & SDS

View current batch:

Background

β-Amyloid (1-16) is a β-Amyloid protein fragment involved in metal binding. Beta-amyloid is a peptide that forms amyloid plaques in the brains of Alzheimer's disease (AD) patients.

β-amyloid (1-16) fragment is considered as valid models to examine the contribution of the key histidine residues (His , His in mouse and His , His , His in human fragments) to the Ab-Cu2+ interaction. Oxidation targets for β-Amyloid (1-16) are the histidine residues coordinated to the metal ions. Copper is bound to Aβ in senile plaque of Alzheimer's disease with β-Amyloid (1-16) taking part in the coordination of the Cu2+ ions. Cu2+ and Zn2+ are linked with the neurotoxicity of -Amyloid and free radical damage[1]. β-amyloid (1-16) is the minimal amino acidic sequence display a Cu coordination mode which involves three Histidines (His6, His13 and His14). β-amyloid (1-16) is supposed to be involved in metal binding[2]. Human β-amyloid interacts with zinc ions through its metal-binding domain 1-16. The C-tails of the two polypeptide chains of the rat Aβ(1-16) dimer are oriented in opposite directions to each other, which hinders the assembly of rat Aβ dimers into oligomeric aggregates. Thus, the differences in the structure of zinc-binding sites of human and rat β-Amyloid (1-16), their ability to form regular cross-monomer bonds, and the orientation of their hydrophobic C-tails could be responsible for the resistance of rats to Alzheimer's disease[3].

[1]. Kowalik-Jankowska T, et al. Coordination abilities of the 1-16 and 1-28 fragments of beta-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study. J Inorg Biochem. 2003 Jul 1;95(4):270-82. [2]. Minicozzi V, et al. Identifying the minimal copper- and zinc-binding site sequence in amyloid-beta peptides. J Biol Chem. 2008 Apr 18;283(16):10784-92. [3]. Istrate AN, et al. NMR solution structure of rat aβ(1-16): toward understanding the mechanism of rats' resistance to Alzheimer's disease. Biophys J. 2012 Jan 4;102(1):136-43.

Chemical Properties

Cas No. 131580-10-4 SDF
Synonyms N/A
Chemical Name N/A
Canonical SMILES Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys
Formula C84H119N27O28 M.Wt 1955.04
Solubility Soluble in DMSO Storage Store at -20°C
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Evaluation sample solution : ship with blue ice
All other available size: ship with RT , or blue ice upon request

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.

  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate