Home>>Signaling Pathways>> Others>> Nampt>>GNE-617 hydrochloride

GNE-617 hydrochloride

Catalog No.GC15967

NAMPT inhibitor, potent and competitive

Products are for research use only. Not for human use. We do not sell to patients.

GNE-617 hydrochloride Chemical Structure

Cas No.: 2070014-99-0

Size Price Stock Qty
2 mg
$50.00
In stock
5 mg
$81.00
In stock
10 mg
$135.00
In stock
50 mg
$405.00
In stock
100 mg
$675.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com


Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Description of GNE-617 hydrochloride

GNE-617 hydrochloride is a potent and competitive inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) with IC50 value of 5nM [1].

GNE-617 hydrochloride is a potent inhibitor of NAMPT. It reduces the NAD levels in a > 95% reduction in both NAPRT1-deficient and NAPRT1-proficient cell lines and exerts EC50 values ranging from 0.54nM to 4.69nM. In the invitro ADME assessments, GNE-617 hydrochloride shows the most optimal combination of in vitro metabolic stability, MDCK permeability and protein binding. Besides that, GNE-617 hydrochloride has potent antiproliferation effects on various cell lines. The IC50 values of it in U251, HT1080, PC3, MiaPaCa2 and HCT116 cell lines are 1.8nM, 2.1nM, 2.7nM, 7.4nM and 2nM, respectively. Moreover, GNE-617 hydrochloride also shows significant antitumor effects on U251 human glioblastoma tumor xenografts in mice and has no obvious effect on body weight loss [1, 2].

References:
[1] Zheng X, Bauer P, Baumeister T, et al.  Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (Nampt) inhibitors. Journal of medicinal chemistry, 2013, 56(16): 6413-6433.
[2] O'Brien T, Oeh J, Xiao Y, et al.  Supplementation of Nicotinic Acid with NAMPT Inhibitors Results in Loss of In Vivo Efficacy in NAPRT1-Deficient Tumor Models. Neoplasia, 2013, 15(12): 1314-IN3.

Protocol of GNE-617 hydrochloride

Kinase experiment:

For RNA interference (RNAi), A549 cells are plated at 1,500 cells per well in 96-well plates, allowed to adhere for 24 hours, and transfected with 25 nM siRNA oligonucleotide using Dharmafect 4. Transfected cells are treated with the indicated concentrations of GNE-617 (0.1, 1 , 10 , 100 , and 1000 nM) for 72 hours and viability is evaluated with CellTiter-Glo. Lysates for detection of NAPRT1 protein are collected 72 hours after transfection of 1 million A549 cells in 10 cm dishes. For NAPRT1 re-expression, RERF-LC-MS cells are transfected with pCMV6-AC.NAPRT1 and empty vector pCMV6-AC using Amaxa Nucleofector technology and selected with Geneticin[1].

Cell experiment:

Cells are grown in RPMI-1640 medium supplemented with 10% FBS and 2 mM glutamine and passaged not more than 20 times after thawing. To determine the IC50 values and nicotinic acid rescue status, cells are treated with nine point dose titrations of GNE-617 with or without 10 μM nicotinic acid. At 96 hours post-drug addition, the GNE-617-treated cells are evaluated using CyQUANT Direct Cell Proliferation Assay followed by CellTiter-Glo Luminescent Cell Viability Assay quantified with a Wallac EnVision 2104 Multilabel Reader. IC50 values are calculated using XLfit 5.1. To examine the protein level, cells are lysed in ice-cold radioimmunoprecipitation assay buffer, run on SDS-PAGE (4%-12% Bis-Tris), and evaluated by Western blotting using antibodies directed against NAPRT1 and β-actin[1].

Animal experiment:

Rats[2] Male naïve Sprague Dawley rats are administered once daily (QD) via oral gavage either (1) GNE-617 at 30 mg/kg for 2 consecutive days in combination with NA at 75 mg/kg twice daily (BID; 6 h apart); (2) GNE-618 at 30 mg/kg for 1 day; or (3) GMX-1778 at 30 mg/kg for 1 day. Dose selection for each compound is based on tolerability and toxicity findings from the safety studies and for nicotinic acid (NA) on the highest concentration of NA that could be administered to rats in a solution form. Formulating NA at higher concentration resulted in a suspension, and NA is determined to be unstable in a suspension form. GNE-617, GNE-618, and GMX-1778 are formulated as a solution in the vehicle of 60% polyethylene glycol (PEG 400)/10% ethanol/30% 5% dextrose in water (D5W) (vol/vol/vol), and NA is formulated as a solution in water. At 1 h and 6.5 h post-dose (on Day 2 for GNE-617), rats (3-4 rats per time point) are euthanized, and the blood, retina, and brain are collected. Blood samples are collected into K2EDTA Microtainer tubes. The tubes are chilled on wet ice until centrifugation within 30 min of collection. Plasma is collected and transferred to 1.2 mL cluster tubes. Tissues are rinsed with phosphate-buffered saline and blotted dry using gauze. All samples are stored at more than −80°C until compound analysis. Results are expressed as an absolute concentration in retina, brain, or plasma and as a ratio of retina:plasma concentration.

References:

[1]. Shames DS, et al. Loss of NAPRT1 Expression by Tumor-specific Promoter Methylation Provides a Novel Predictive Biomarker for NAMPT Inhibitors. Clin Cancer Res. 2013 Dec 15;19(24):6912-23.
[2]. Zabka TS, et al. Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase. Toxicol Sci. 2015 Mar;144(1):163-72.

Chemical Properties of GNE-617 hydrochloride

Cas No. 2070014-99-0 SDF
Chemical Name (Z)-N-(4-((3,5-difluorophenyl)sulfonyl)benzyl)imidazo[1,2-a]pyridine-6-carbimidic acid hydrochloride
Canonical SMILES FC1=CC(F)=CC(S(C2=CC=C(C/N=C(O)/C3=CN4C=CN=C4C=C3)C=C2)(=O)=O)=C1.Cl
Formula C21H16ClF2N3O3S M.Wt 463.88
Solubility Soluble in DMSO Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of GNE-617 hydrochloride

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.1557 mL 10.7786 mL 21.5573 mL
5 mM 0.4311 mL 2.1557 mL 4.3115 mL
10 mM 0.2156 mL 1.0779 mL 2.1557 mL
  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution) of GNE-617 hydrochloride

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

Reviews

Review for GNE-617 hydrochloride

Average Rating: 5 ★★★★★ (Based on Reviews and 35 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for GNE-617 hydrochloride

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.