NSC 87877 |
| カタログ番号GC10169 |
A potent inhibitor of SHP-1 and SHP-2
Products are for research use only. Not for human use. We do not sell to patients.
Cas No.: 56990-57-9
Sample solution is provided at 25 µL, 10mM.
IC50: NSC-87877 potently inhibited Shp2 with an IC50 of 0.318 ± 0.049 μM. NSC-87877 seemed to have no selectivity between human Shp2 and Shp1 (IC50 0.355 ± 0.073μM). In addition, NSC-87877 showed approximately 5-, 24-, 206-, 266-, and 475-fold selectivity for Shp2 over PTP1B (IC50 1.691 ± 0.407μM), HePTP (IC50 7.745 ± 1.561μM), DEP1 (IC50 65.617± 4.120μM), CD45 (IC50 84.473 ± 16.185μM), and LAR (IC50 150.930 ± 9.077μM), respectively [1].
Shp2, a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene, is involved in the growth factorinduced activation of mitogen-activated protein kinases Erk1 and Erk2. Moreover, gain-of-function Shp2 mutations have been found in Noonan syndrome and childhood leukemias. Therefore, Shp2 PTP inhibitors are required for the evaluation of Shp2 as a therapeutic target. NSC87877, a novel SHP-2 inhibitor, has been observed dose-dependent cytotoxicity in leukemic cell lines.
In vitro: Molecular modeling and site-directed mutagenesis studies suggested that NSC-87877 binds to the catalytic cleft of Shp2 PTP. It is noteworthy that NSC-87877 inhibited epidermal growth factor (EGF)-induced activation of Shp2 PTP, Ras, and Erk1/2 in cell cultures but did not block EGF-induced Gab1 tyrosine phosphorylation or Gab1-Shp2 association. Furthermore, NSC-87877 inhibited Erk1/2 activation by a Gab1-Shp2 chimera but did not affect the Shp2-independent Erk1/2 activation by phorbol 12-myristate 13-acetate. These results identified NSC-87877 as the first PTP inhibitor capable of inhibiting Shp2 PTP in cell cultures without a detectable off-target effect [1].
In vivo: An mice in-vivo study aimed to investigate the effects of S NSC-87877 on inflammatory pain and its underlying mechanisms. In this study, immediately after behavioral tests, sinistral spinal dorsal horn was collected for immunoblotting analysis of the expression of NMDA receptors. Results showed that NSC-87877 alleviated CFA-induced mechanical allodynia, which had no effects on the nociceptive responses in naive mice. Moreover, NSC-87877 specifically abolished the increase in the synaptic expression of NMDA receptor NR2B subunits in inflamed mice. These findings indicated that NSC-87877 could ameliorate inflammatory pain by inhibiting the synaptic accumulation of NR2B in spinal dorsal horn [2].
Clinical trial: NSC-87877 is currently in the preclinical development and no clinical trial is ongoing.
Reference:
[1] Liwei Chen, Shen-Shu Sung, M. L. Richard Yip, Harshani R. Lawrence, Yuan Ren, Wayne C. Guida, Said M. Sebti, Nicholas J. Lawrence, and Jie Wu. Discovery of a Novel Shp2 Protein Tyrosine Phosphatase Inhibitor. Mol Pharmacol 2006,70:562–570
[2] YANG Hong-bin, YANG Xian, CAO Jing, LI Shuai, LIU Yan-ni, SUO Zhan-wei, ZHENG Cheng-rong, CUI Hong-bin, GUO Zhong, HU Xiao-dong. Inhibitory effects of SHP2 blocker NSC-87877 on inflammatory pain and its underlying mechanisms. Chinese Pharmacological Bulletin 2010-09
| Cas No. | 56990-57-9 | SDF | |
| Chemical Name | (7E)-8-oxo-7-[(6-sulfonaphthalen-2-yl)hydrazinylidene]quinoline-5-sulfonic acid | ||
| Canonical SMILES | C1=CC2=C(C(=O)C(=NNC3=CC4=C(C=C3)C=C(C=C4)S(=O)(=O)O)C=C2S(=O)(=O)O)N=C1 | ||
| Formula | C19H13N3O7S2 | M.Wt | 459.45 |
| 溶解度 | ≥ 45.9mg/mL in DMSO, ≥ 16.6 mg/mL in Water with ultrasonic | Storage | Store at 4°C |
| General tips | Please select the appropriate solvent to prepare the stock solution according to the
solubility of the product in different solvents; once the solution is prepared, please store it in
separate packages to avoid product failure caused by repeated freezing and thawing.Storage method
and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored
at -20°C, please use it within 1 month. To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time. |
||
| Shipping Condition | Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request. | ||
| Prepare stock solution | |||
|
1 mg | 5 mg | 10 mg |
| 1 mM | 2.1765 mL | 10.8826 mL | 21.7652 mL |
| 5 mM | 435.3 μL | 2.1765 mL | 4.353 mL |
| 10 mM | 217.7 μL | 1.0883 mL | 2.1765 mL |
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )
Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.
Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.
Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Average Rating: 5 (Based on Reviews and 30 reference(s) in Google Scholar.)
GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.
Required fields are marked with *















