Home>>Signaling Pathways>> Microbiology & Virology>> HIV>>Miltefosine

Miltefosine (Synonyms: Hexadecylphosphocholine, HPC, NSC 605583)

Catalog No.GC10811

PI3K/Akt inhibitor

Products are for research use only. Not for human use. We do not sell to patients.

Miltefosine Chemical Structure

Cas No.: 58066-85-6

Size Price Stock Qty
10mM (in 1mL DMSO) Please Inquire Please Inquire
50mg Please Inquire Please Inquire
100mg
$56.00
In stock
500mg
$130.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1]:

Cell lines

L6E9 rat skeletal muscle cell line

Preparation method

The solubility of this compound in DMSO is limited. General tips for obtaining a higher concentration: Please warm the tube at 37 °C for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below - 20 °C for several months.

Reacting condition

10, 20, 40 or 60 μM; 15, 30, 45 or 60 mins

Applications

In L6E9 rat skeletal muscle cell line, Miltefosine dose-dependently inhibited insulin-stimulated Akt/PKB phosphorylation, with 75% inhibition at 40 μM and 98% inhibition at 60 μM. Besides, Miltefosine (40 μM for 60 mins) pre-treatment also inhibited insulin-stimulated activation of PI3K, without significant effect on cell survival, cell number, protein content or cell morphology.

Animal experiment [2]:

Animal models

BC-1 cell-xenografted NOD-SCID mice

Dosage form

50 mg/kg; i.p.; 5 days a week, for 20 days

Applications

Compared with vehicle-treated mice, Miltefosine showed inhibition on the growth rate of tumors. By day 14 after treatment, there was an approximately 50% decrease in the average tumor volume of Miltefosine-treated mice. Immunohistochemical analyses of tumor sections from Miltefosine-treated mice displayed reduced phosphorylation of ribosomal S6 protein which correlated with the delay in tumor progression in the treatment group.

Other notes

Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.

References:

[1]. Verma, N.K. and C.S. Dey, The anti-leishmanial drug miltefosine causes insulin resistance in skeletal muscle cells in vitro. Diabetologia, 2006. 49(7): p. 1656-60.

[2]. Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B. Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood. 2010 Jun 3;115(22):4455-63.

Background

Miltefosine is an inhibitor of PI3K/Akt signaling with IC50 value of 34.6±11.7μM, 6.8±0.9 μM when tested with MCF7 and Hela-WT respectively [1].
PI3K (phosphoinositide-3-kinase) family is an important part in the growth factor super-family signaling process, and can be activated by a variety of cytokines and chemical factors. The activation of PI3K can phosphorylate and activate AKT, localizing it in the plasma membrane. The PI3K/Akt pathway is an intracellular signaling pathway which plays an important role in regulating cell cycle, such as cellular quiescence, proliferation, cancer, longevity and so forth [2, 3]. Many studies have shown that PI3K/Akt had abnormal expression in patients with cancer or virus infection.
Miltefosine is an inhibitor for PI3K/Akt signaling. When tested with macrophages infected by human HIV-1 virus, miltefosine showed significant ability to reduce the viral production via inhibiting PI3K/Akt signaling pathway [4]. In L6E9 skeltal muscle cell line, treatment of milefosine resulted in the resistance of skeletal muscle cells via inhibiting PI3K/Akt signaling pathway [5].
References:
[1].    Rybczynska, M., et al., MDR1 causes resistance to the antitumour drug miltefosine. Br J Cancer, 2001. 84(10): p. 1405-11.
[2].    Bauer, T.M., M.R. Patel, and J.R. Infante, Targeting PI3 kinase in cancer. Pharmacol Ther, 2015. 146c: p. 53-60.
[3].    Minami, A., et al., Connection between Tumor Suppressor BRCA1 and PTEN in Damaged DNA Repair. Front Oncol, 2014. 4: p. 318.
[4].    Chugh, P., et al., Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy. Retrovirology, 2008. 5(11): p. 1742-4690.
[5].    Verma, N.K. and C.S. Dey, The anti-leishmanial drug miltefosine causes insulin resistance in skeletal muscle cells in vitro. Diabetologia, 2006. 49(7): p. 1656-60.

Chemical Properties

Cas No. 58066-85-6 SDF
Synonyms Hexadecylphosphocholine, HPC, NSC 605583
Chemical Name hexadecyl 2-(trimethylazaniumyl)ethyl phosphate
Canonical SMILES CCCCCCCCCCCCCCCCOP(=O)([O-])OCC[N+](C)(C)C
Formula C21H46NO4P M.Wt 407.57
Solubility ≥ 10.2mg/mL in Water Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.4536 mL 12.2678 mL 24.5357 mL
5 mM 0.4907 mL 2.4536 mL 4.9071 mL
10 mM 0.2454 mL 1.2268 mL 2.4536 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for Miltefosine

Average Rating: 5 ★★★★★ (Based on Reviews and 34 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Miltefosine

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.