Home>>Signaling Pathways>> Proteases>> Mitochondrial Metabolism>>MPP+ Iodide

MPP+ Iodide (Synonyms: N-Methyl-4-Phenylpyridinium Iodide)

Catalog No.GC18188

MPP+ Iodide (1-methyl-4-phenylpyridinium iodide) is a toxic metabolite of the neurotoxin MPTP, and has successfully induced Parkinson-like syndromes in an in vitro model by selectively destroying dopaminergic neurons in substantia nigra.

Products are for research use only. Not for human use. We do not sell to patients.

MPP+ Iodide Chemical Structure

Cas No.: 36913-39-0

Size Price Stock Qty
50mg
$47.00
In stock
100mg
$89.00
In stock
250mg
$211.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 1 publications

Product Documents

Protocol

Cell experiment [1]:

Cell lines

Bv-2 cells

Preparation Method

The cell experiment took Bv-2 cells as the object, set the MPP+ Iodidefinal concentration of 0.1, 0.2, 0.5 mmol as the interference concentration, and after 24 h of culture, Western blot detected the expression level of NLRP3 protein in cells, and selected the optimal concentration.

Reaction Conditions

0.1, 0.2, 0.5 mmol, 24h

Applications

After 0.1/0.2/0.5 mmol MPP+ Iodide intervention cells for 24 h, MPP+ Iodideactivated cells expressed NLRP3 and MIF protein significantly higher than in the control group. 0.2 mmol MPP+ Iodideis the optimal concentration of NLRP3 inflammasomes that activate Bv-2.

Animal experiment [2]:

Animal models

Male Sprague–Dawley rats

Preparation Method

Four days after siRNA infusion, rats were re-anesthetized for intranigral infusion of MPP+ Iodide(3 µg/µl) at a rate of 0.2 µl/min. After the surgery, rats recovered from anesthesia and were placed in home cages for the indicated times.

Dosage form

3 µg/µl;intranigral infusion

Applications

The results shown intranigral infusion of MPP+ Iodideincreased HO-1 levels in a time-dependent manner; significant HO-1 elevation was observed 24 h to 7 d after MPP+ Iodideinfusion.

References:

[1]. Huang H, et al. [Macrophage migration inhibitory factor meditates MPP+/MPTP-induced NLRP3 inflammasome activation in microglia cells]. Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jul 20;41(7):972-979. Chinese.

[2]. Hung KC, et al. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation. PLoS One. 2014 Mar 19;9(3):e91074.

Background

MPP+ Iodide (1-methyl-4-phenylpyridinium iodide) is a toxic metabolite of the neurotoxin MPTP, and has successfully induced Parkinson-like syndromes in an in vitro model by selectively destroying dopaminergic neurons in substantia nigra.[1]

In vitro efficacy test it shown that when SH-SY5Y cells were exposed to MPP+ Iodidein the range of 1–100 M for 3–24 h, MPP+ Iodide exhibited a dose-time dependent cytotoxicity.[1] In vitro experiment it indicated that SH-SY5Y cells were treated with 0.2, 0.4, 0.8, or 1.0 mM MPP + for 24 h, MPP+ Iodide could significantly reduce cell viability in a dose-dependent manner.[2] In vitro, treatment with 1-7.5 mM of MPP+ Iodide dose-dependently increased the neurodegeneration in the L1 larvae of BZ555 worms. The percentages of worms exhibiting neurodegeneration after treatment with 1 mM, 2.5 mM, 5 mM and 7.5 mM MPP+ Iodide were 24%, 27%, 67% and 87%, respectively.[3] Both TSM1 and primary neurons were treated with 0.1 to 2 mM of MPP+ Iodide induced neuronal cell death in a concentration dependent manner in vitro. TSM1 cells and primary neurons were treated with 400 µM MPP+ Iodide decreased by 60% and 80% the cell viability as compared to the control, respectively.[4] In vitro to test the role of MAC1 in MPTP/MPP+-induced neurotoxicity, neuron-glia cultures were treated with 0.125, 0.25, or 0.5 μM of MPP+ Iodidefound that MPP+-induced DAergic neurotoxicity in neuron-glia cultures was attenuated in the absence of MAC1.[5]

In vivo study indicated that intranigral infusion of 3 µg/µl MPP+ Iodideinduced oxidative injury in nigrostriatal dopaminergic system of rat brain; and autophagy is pro-death in the MPP+-induced oxidative injury.[6]

References:
[1].Reudhabibadh R, et al. Suppressing Cdk5 Activity by Luteolin Inhibits MPP+-Induced Apoptotic of Neuroblastoma through Erk/Drp1 and Fak/Akt/GSK3β Pathways. Molecules. 2021 Feb 28;26(5):1307.
[2].Yan J, et al. Artemisinin attenuated oxidative stress and apoptosis by inhibiting autophagy in MPP+-treated SH-SY5Y cells. J Biol Res (Thessalon). 2021 Feb 25;28(1):6.
[3].Anjaneyulu J, et al. Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson's disease. J Ayurveda Integr Med. 2020 Oct-Dec;11(4):440-447.
[4].Petit-Paitel A, et al. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One. 2009;4(5):e5491.
[5].Hu X, et al. Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. J Immunol. 2008 Nov 15;181(10):7194-204.
[6].Hung KC, et al. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation. PLoS One. 2014 Mar 19;9(3):e91074.

Chemical Properties

Cas No. 36913-39-0 SDF
Synonyms N-Methyl-4-Phenylpyridinium Iodide
Chemical Name 1-methyl-4-phenyl-pyridinium, monoiodide
Canonical SMILES C[N+](C=C1)=CC=C1C2=CC=CC=C2.[I-]
Formula C12H12N.I M.Wt 297.1
Solubility 100 mM in Water Storage Store at RT
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 3.3659 mL 16.8294 mL 33.6587 mL
5 mM 0.6732 mL 3.3659 mL 6.7317 mL
10 mM 0.3366 mL 1.6829 mL 3.3659 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Related Video

    MPP+ Iodide-GlpBio

Reviews

Review for MPP+ Iodide

Average Rating: 5 ★★★★★ (Based on Reviews and 2 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for MPP+ Iodide

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.