Home>>Sappanone A
Sappanone A Catalog No.GC41626

A homoisoflavonoid with diverse biological activities

Size Price Stock Qty
5mg
$129.00
In stock
10mg
$244.00
In stock
25mg
$579.00
In stock
50mg
$1,028.00
In stock

Customer Review

Based on customer reviews.

Tel: (626) 353-8530 Email: [email protected]

Sample solution is provided at 25 µL, 10mM.

Quality Control

Quality Control & SDS

View current batch:

Chemical Properties

Cas No. 104778-14-5,102067-84-5 SDF Download SDF
Synonyms N/A
Chemical Name N/A
Canonical SMILES OC1=CC=C(C(/C(CO2)=C/C3=CC=C(O)C(O)=C3)=O)C2=C1
Formula C16H12O5 M.Wt 284.3
Solubility DMF: 20 mg/ml,DMSO: 15 mg/ml,Ethanol: 5 mg/ml,PBS (pH 7.2): 0.25 mg/ml Storage Store at -20°C
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Evaluation sample solution : ship with blue ice
All other available size: ship with RT , or blue ice upon request
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

Background

Sappanone A is a homoisoflavonoid with diverse biological activities that has been isolated from the aerial parts of C. pulcherrima, the heartwood of C. sappan, and the stems of H. campechianum. In vitro, sappanone A inhibits 76.2, 59.2, 37.4, and 35.4% of FGFR1, KDR, c-Met, and c-Kit kinase activity, respectively, when used at a concentration of 10 μM. It also inhibits influenza viral neuraminidase (NA) with IC50 values of 0.7, 1.1, and 1 μM for H1N1, H3N2, and H9N2 influenza viral NAs, respectively. Sappanone A has antibacterial activity against Gram-positive B. subtilis, B. sphaericus, and S. aureus as well as Gram-negative K. aerogenes and C. violaceum. It also inhibits the growth of A. niger and C. albicans fungi. Sapannone A inhibits LPS-induced inflammatory responses in vitro and in vivo, reducing nitric oxide (NO), interleukin-6 (IL-6), and prostaglandin E2 production in RAW264.7 cells as well as LPS-induced mortality in mice. It also attenuates airway inflammation and mucus hypersecretion via activation of the Nrf2 signaling pathway in a mouse model of ovalbumin-induced asthma.