Home>>Signaling Pathways>> Microbiology & Virology>> Bacterial>>Sitafloxacin

Sitafloxacin (Synonyms: DU6859a, DU-6859)

Catalog No.GC15081

Sitafloxacin is a new fluoroquinolone offering a broader spectrum ,? as a broad-spectrum antimicrobial agent.

Products are for research use only. Not for human use. We do not sell to patients.

Sitafloxacin Chemical Structure

Cas No.: 127254-12-0

Size Price Stock Qty
5mg
$90.00
In stock
10mg
$159.00
In stock
50mg
$522.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1]:

Cell lines

LPS-stimulated THP-1 cells

Preparation Method

THP-1 cells were cultured with LPS in the presence or absence of antibiotics (Sitafloxacin) for 4 h. Following the incubation, supernatants were collected.

Reaction Conditions

1-50 µg/mL Sitafloxacin for 4h

Applications

Sitafloxacin significantly reduced the concentration of TNFα in the supernatants of LPS-stimulated THP-1 cells than other quinolone antibiotics did; Sitafloxacin also reduced the levels of IL-8, IP-10, MCP-1, MIP-1α and MIP-1β.

Animal experiment [2]:

Animal models

Six-week-old male, ddY, specific-pathogen-free mice (body weight 16-20 g)

Preparation Method

From 24 h after infection, antibiotics were administered orally twice a day to the Sitafloxacin and CPFX treatment groups for 3 days.Each single dose was 10 mg/kg

Dosage form

10 mg/kg Sitafloxacin twice a day for 3 days

Applications

In Sitafloxacin-treated mice, H. influenzae was decreased by 3 days after starting oral administration of Sitafloxacin.

References:

[1]. Sakamaki I, Fukushi M, et,al. Sitafloxacin reduces tumor necrosis factor alpha (TNFα) converting enzyme (TACE) phosphorylation and activity to inhibit TNFα release from lipopolysaccharide-stimulated THP-1 cells. Sci Rep. 2021 Dec 17;11(1):24154. doi: 10.1038/s41598-021-03511-5. PMID: 34921186; PMCID: PMC8683466.

[2]. Nakamura S, Yanagihara K, et,al. In vivo efficacy of sitafloxacin in a new murine model of non-typeable Haemophilus influenzae pneumonia by sterile intratracheal tube. Int J Antimicrob Agents. 2009 Sep;34(3):210-4. doi: 10.1016/j.ijantimicag.2009.03.011. Epub 2009 Apr 24. PMID: 19394203.

Background

Sitafloxacin is a new fluoroquinolone offering a broader spectrum , as a broad-spectrum antimicrobial agent[2],has more potent activity against Gram-positive, Gramnegative and atypical pathogens than other quinolones such as ofloxacin, CPFX and sparfloxacin[7,8].

Sitafloxacin suppressed TNFα production more strongly than the other quinolone antibiotics. It did not suppress the signaling pathways that produced TNFα but increased phosphorylated ERK. Sitafloxacin inhibited the extracellular release of TNFα[5,6].TACE specifically cleaves pro-TNFα to release TNFα from cell. Sitafloxacin reduced the phosphorylation and activity of TACE[1]. Sitafloxacin is effective against pneumococcal infections, and incidence of drug-resistant mutants is low in vitro conditions[3].

Sitafloxacin was effective against Haemophilus influenzae pneumonia in a murine model. In Sitafloxacin-treated mice, H. influenzae was decreased by 3 days after starting oral administration of Sitafloxacin, total cell counts and neutrophil counts in BALF were considerably decreased, and histopathologically inflammatory changes were greatly improved with Sitafloxacin treatment [4]. Sitafloxacin can achieve a higher tissue concentration than CPFX[9]. Besides, Sitafloxacin monotherapy might be effective against low-risk FN in lung cancer patients[10].

References:
[1]: Sakamaki I, Fukushi M, et,al. Sitafloxacin reduces tumor necrosis factor alpha (TNFα) converting enzyme (TACE) phosphorylation and activity to inhibit TNFα release from lipopolysaccharide-stimulated THP-1 cells. Sci Rep. 2021 Dec 17;11(1):24154. doi: 10.1038/s41598-021-03511-5. PMID: 34921186; PMCID: PMC8683466.
[2]: Sato K, Hoshino K, et,al. Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Antimicrob Agents Chemother. 1992 Jul;36(7):1491-8. doi: 10.1128/AAC.36.7.1491. PMID: 1324647; PMCID: PMC191610.
[3]: Onodera Y, Uchida Y, et,al. Dual inhibitory activity of sitafloxacin (DU-6859a) against DNA gyrase and topoisomerase IV of Streptococcus pneumoniae. J Antimicrob Chemother. 1999 Oct;44(4):533-6. doi: 10.1093/jac/44.4.533. PMID: 10588315.
[4]: Nakamura S, Yanagihara K, et,al. In vivo efficacy of sitafloxacin in a new murine model of non-typeable Haemophilus influenzae pneumonia by sterile intratracheal tube. Int J Antimicrob Agents. 2009 Sep;34(3):210-4. doi: 10.1016/j.ijantimicag.2009.03.011. Epub 2009 Apr 24. PMID: 19394203.
[5]: Black RA, Rauch CT, et,al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997 Feb 20;385(6618):729-33. doi: 10.1038/385729a0. PMID: 9034190.
[6]: Moss ML, Jin SL, et,al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997 Feb 20;385(6618):733-6. doi: 10.1038/385733a0. Erratum in: Nature 1997 Apr 17;386(6626):738. PMID: 9034191.
[7]: Milatovic D, Schmitz FJ, et,al. In vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates. Antimicrob Agents Chemother. 2000 Apr;44(4):1102-7. doi: 10.1128/AAC.44.4.1102-1107.2000. PMID: 10722524; PMCID: PMC89825.
[8]: Miyashita N, Niki Y, et,al. In vitro and in vivo activities of sitafloxacin against Chlamydia spp. Antimicrob Agents Chemother. 2001 Nov;45(11):3270-2. doi: 10.1128/AAC.45.11.3270-3272.2001. PMID: 11600398; PMCID: PMC90824.
[9]: Fukuda Y, Yanagihara K, et,al. In vivo efficacies and pharmacokinetics of DX-619, a novel des-fluoro(6) quinolone, against Streptococcus pneumoniae in a mouse lung infection model. Antimicrob Agents Chemother. 2006 Jan;50(1):121-5. doi: 10.1128/AAC.50.1.121-125.2006. PMID: 16377676; PMCID: PMC1346772.
[10]: On R, Matsumoto T, et,al. Lung Oncology Group in Kyushu (LOGIK). Efficacy and Safety of Sitafloxacin in Treating Low-risk Febrile Neutropenia in Patients with Lung Cancer. JMA J. 2022 Jul 15;5(3):334-340. doi: 10.31662/jmaj.2021-0227. Epub 2022 May 23. PMID: 35992295; PMCID: PMC9358298.

Chemical Properties

Cas No. 127254-12-0 SDF
Synonyms DU6859a, DU-6859
Chemical Name 7-[(7S)-7-amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(1R,2S)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid
Canonical SMILES C1CC12CN(CC2N)C3=C(C=C4C(=C3Cl)N(C=C(C4=O)C(=O)O)C5CC5F)F
Formula C19H18ClF2N3O3 M.Wt 409.81
Solubility DMF: slightly soluble,DMSO: slightly soluble,Methanol: slightly soluble Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.4402 mL 12.2008 mL 24.4016 mL
5 mM 0.488 mL 2.4402 mL 4.8803 mL
10 mM 0.244 mL 1.2201 mL 2.4402 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for Sitafloxacin

Average Rating: 5 ★★★★★ (Based on Reviews and 15 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Sitafloxacin

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.