الصفحة الرئيسية>>Signaling Pathways>> Immunology/Inflammation>> Reactive Oxygen Species>>Sinapine thiocyanate

Sinapine thiocyanate

رقم الكتالوجGC30033

سينابين ثيوسيانات هو قلويد معزول من بذور الأنواع الصليبيةيعرض Sinapine thiocyanate تأثيرات مضادة للالتهابات ، ومضادة للأكسدة ، ومضادة للأورام ، ومضادة لتولد الأوعية ، وتأثيرات واقية من الإشعاعSinapine thiocyanate هو أيضًا مثبط لأسيتيل كولينستراز (AChE) ويمكن استخدامه في البحث عن مرض الزهايمر ، والرنح ، والوهن العضلي الوبيل ، ومرض باركنسون

Products are for research use only. Not for human use. We do not sell to patients.

Sinapine thiocyanate التركيب الكيميائي

Cas No.: 7431-77-8

الحجم السعر المخزون الكميّة
10mM (in 1mL DMSO)
61٫00
متوفر
10mg
56٫00
متوفر
25mg
110٫00
متوفر
50mg
157٫00
متوفر
100mg
253٫00
متوفر
200mg
441٫00
متوفر

Tel:(909) 407-4943 Email: sales@glpbio.com


مراجعات العميل

بناء على آراء العملاء.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Description of Sinapine thiocyanate

Sinapine is an alkaloid from seeds of the cruciferous species which shows favorable biological activities such as antioxidant and radio-protective activities.

Sinapine increases the sensitivity of Caco-2 cells to doxorubicin in a dose-dependent manner, whereas no or less effect is observed in the cells treated with doxorubicin alone. The combination of Sinapine and doxorubicin has a synergistic effect and increased the cytotoxicity of doxorubicin against Caco-2 cells. Results indicate that Sinapine plays an important role in the down-regulation of P-glycoprotein expression through suppression of FGFR4-FRS2a-ERK1/2 signaling pathway[1]. Sinapine can effectively protect against OH-induced damages to DNA and MSCs, thereby it may have a therapeutic potential in MSCs transplantation[2].

During the first 8 days, the dry matter intake and live weight gain of the rats are significantly reduced by the intake of sinapine and other phenolic compounds. However, after this adaptation period their performances are similar to those of the control group[3].

[1]. Guo Y, et al. Sinapine as an active compound for inhibiting the proliferation of Caco-2 cells via downregulation of P-glycoprotein. Food Chem Toxicol. 2014 May;67:187-92. [2]. Li X, et al. Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms. Chem Pharm Bull (Tokyo). 2016;64(4):319-25. [3]. Vermorel M, et al. Valorization of rapeseed meal. 5. Effects of sinapine and other phenolic compounds on food intake and nutrient utilization in growing rats. Reprod Nutr Dev. 1987;27(4):781-90.

Protocol of Sinapine thiocyanate

Cell experiment:

The Caco-2 cells are seeded into a 96-well plate with 8000 cells/well for 24 h. After incubation with different doses of Sinapine (0-200 μM), doxorubicin, or both for 24 h, the medium is discarded. Cell survival after exposure to Sinapine alone or a combination of Sinapine and the anti-tumor agent doxorubicin is examined by MTT colorimetric assay[1].

Animal experiment:

Rats[3]Sixty male Sprague-Dawley rats (95 g) are randomly allotted to 6 groups of 10 rats each and reared in individual cages. Six groups of 10 growing rats each are fed ad libitum for 15 days one of six diets: diet A, rapeseed (3.80 g of sinapine/kg DM); diet B, ethanol/water-extracted rapeseed (0.48 g of sinapine); diet C, control diet; diet G, control diet+3.74 g of extracted sinapine; diet H, control diet + 3.72 g of sinapine+other phenolic compounds; or diet I, control diet+the hydrolysis products of sinapine and other phenolic compounds. The rats are weighed at 8 a.m. on days 1, 4, 8, 11 and 15 of the trial. After sacrifice the gut contents are eliminated to permit determination of empty body weight gain (EBWG). The distribution, refusal and intake of each rat are recorded every day[3].

References:

[1]. Guo Y, et al. Sinapine as an active compound for inhibiting the proliferation of Caco-2 cells via downregulation of P-glycoprotein. Food Chem Toxicol. 2014 May;67:187-92.
[2]. Li X, et al. Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms. Chem Pharm Bull (Tokyo). 2016;64(4):319-25.
[3]. Vermorel M, et al. Valorization of rapeseed meal. 5. Effects of sinapine and other phenolic compounds on food intake and nutrient utilization in growing rats. Reprod Nutr Dev. 1987;27(4):781-90.

Chemical Properties of Sinapine thiocyanate

Cas No. 7431-77-8 SDF
Canonical SMILES COC1=C(O)C(OC)=CC(C=CC(OCC[N+](C)(C)C)=O)=C1.N#C[S-]
Formula C17H24N2O5S M.Wt 368.45
الذوبان DMSO : ≥ 125 mg/mL (339.26 mM) Storage 4°C, protect from light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of Sinapine thiocyanate

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.7141 mL 13.5704 mL 27.1407 mL
5 mM 0.5428 mL 2.7141 mL 5.4281 mL
10 mM 0.2714 mL 1.357 mL 2.7141 mL
  • حاسبة المولارية

  • حاسبة التخفيف

  • Molecular Weight Calculator

كتلة
=
تركيز
x
مقدار
x
ميغاواط *
 
 
 
** عند إعداد حلول المخزون، دائمًا استخدم الوزن الجزيئي الخاص بالدفعة للمنتج على ملصق القارورة MSDS / CoA (متوفر عبر الإنترنت).

احسب

In vivo Formulation Calculator (Clear solution) of Sinapine thiocyanate

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

مراجعات

Review for Sinapine thiocyanate

Average Rating: 5 ★★★★★ (Based on Reviews and 8 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Sinapine thiocyanate

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.