>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Paraxanthine

Paraxanthine (Synonyms: 1,7-Dimethylxanthine, NSC 400018)

Catalog No.GC31210

카페인 대사산물인 파라잔틴은 리아노딘 수용체 채널의 자극을 통해 도파민성 세포 사멸에 대한 보호를 제공합니다.

Products are for research use only. Not for human use. We do not sell to patients.

Paraxanthine Chemical Structure

Cas No.: 611-59-6

Size 가격 재고 수량
10mM (in 1mL DMSO)
US$22.00
재고 있음
5mg
US$20.00
재고 있음
10mg
US$29.00
재고 있음
25mg
US$49.00
재고 있음
50mg
US$70.00
재고 있음
100mg
US$102.00
재고 있음

Tel:(909) 407-4943 Email: sales@glpbio.com


고객 리뷰

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

Description of Paraxanthine

Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

When Paraxanthine (PX) is applied to the cultures for a prolonged period, the number of TH+neurons is augmented in a dose-dependent manner. The effect of Paraxanthine, already significant at 100 μM, increases gradually and remains optimal between 800 and 1000 μM, at 10 DIV. Counts of TH+neurons performs at different stages of maturation of the cultures indicate that Paraxanthine most likely prevents DA cell loss. GDNF, a prototypical trophic factor for DA neurons, is only slightly more effective than 800 μM Paraxanthine in rescuing DA neurons after 10 and 16 DIV when used at an optimal concentration of 20 ng/mL. About 80% of caffeine is N3-demethylated to form Paraxanthine, Unlike Paraxanthine, caffeine is poorly effective in protecting DA neurons from death For example, at a concentration of 800 μM, caffeine produces only a modest 40% increase in the number of TH+ cells at 10 DIV, whereas the same concentration of Paraxanthine optimally promotes DA cell survival (169% increase)[1].

[1]. Guerreiro S, et al. Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol. 2008 Oct;74(4):980-9.

Chemical Properties of Paraxanthine

Cas No. 611-59-6 SDF
Synonyms 1,7-Dimethylxanthine, NSC 400018
Canonical SMILES O=C(N1C)NC2=C(N(C)C=N2)C1=O
Formula C7H8N4O2 M.Wt 180.17
Solubility DMF: 20 mg/mL,DMSO: 30 mg/mL,DMSO:PBS(pH 7.2) (1:3): 0.25 mg/mL,Ethanol: 0.5 mg/mL Storage Store at 2-8°C,protect from light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of Paraxanthine

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 5.5503 mL 27.7516 mL 55.5031 mL
5 mM 1.1101 mL 5.5503 mL 11.1006 mL
10 mM 555 μL 2.7752 mL 5.5503 mL
  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution) of Paraxanthine

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

리뷰

Review for Paraxanthine

Average Rating: 5 ★★★★★ (Based on Reviews and 1 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Paraxanthine

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.