Calhex 231 hydrochloride |
Katalog-Nr.GC17697 |
Calhex 231 Hydrochlorid ist ein CaSR-Inhibitor Über negative allosterische Modulation.
Products are for research use only. Not for human use. We do not sell to patients.
Cas No.: 652973-93-8
Sample solution is provided at 25 µL, 10mM.
Calhex 231 hydrochloride is a novel potent negative allosteric modulator of Ca2+-sensing receptor (CaSR) with an IC50 value of 0.39 µM to the increase in [3H]inositol phosphates induced by transiently expressed human wild-type CaSR in HEK293 cells [1].
The CaSR belongs to G-protein-coupled receptor (GPCR) class 3. CaSR is activated by charged molecules including spermidine, spermine, β-amyloid peptides, and several antibiotics. CaSR is also activated by Mg2+ and Ca2+ present in the extracellular fluids [1].
In HEK293 cells transiently expressing human WT CaSR, increasing the concentration of extracellular Ca2+ from 0.3 to 10 mM resulted in a 10-fold increase in [3H]IP accumulation, while no significant increase in [3H]IP accumulation was detected in cells transiently transfected with an empty control plasmid. The analysis of the dose-response curve resulted in an EC50 value of 3.4 ± 0.1 mM for Ca2+. Preincubation with Calhex 231 concentration-dependently inhibited the IP response to 10 mM Ca2+ in HEK293 cells expressing the human WT CaSR. The analysis of the dose-response curve resulted in an IC50 value of 0.39 ± 0.08 µM for Calhex 231 [1].
Calhex 231 produced significant myocyte depolarizations in segments of mesenteric arteries from both Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats. In the continuing presence of Calhex 231, hyperpolarizations to the calcium-sensing receptor (CaR) activator calindol were significantly reduced [2].
References:
[1]. Petrel C, Kessler A, Maslah F, et al. Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca2+-sensing receptor. Journal of Biological Chemistry, 2003, 278(49): 49487-49494.
[2]. Weston AH, Absi M, Harno E, et al. The expression and function of Ca2+-sensing receptors in rat mesenteric artery; comparative studies using a model of type II diabetes. British journal of pharmacology, 2008, 154(3): 652-662.
Cas No. | 652973-93-8 | SDF | |
Chemical Name | 4-chloro-N-((1S,2S)-2-(((R)-1-(naphthalen-1-yl)ethyl)amino)cyclohexyl)benzamide hydrochloride | ||
Canonical SMILES | C[C@](N[C@@]1([H])CCCC[C@]1([H])NC(C2=CC=C(Cl)C=C2)=O)([H])C3=CC=CC4=CC=CC=C43.Cl | ||
Formula | C25H27ClN2O | M.Wt | 407 |
Löslichkeit | DMF: 15 mg/ml,DMSO: 20 mg/ml,Ethanol: 25 mg/ml,Ethanol:PBS (pH 7.2)(1:2): 0.25 mg/ml | Storage | Store at -20°C |
General tips | Please select the appropriate solvent to prepare the stock solution according to the
solubility of the product in different solvents; once the solution is prepared, please store it in
separate packages to avoid product failure caused by repeated freezing and thawing.Storage method
and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored
at -20°C, please use it within 1 month. To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time. |
||
Shipping Condition | Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request. |
Prepare stock solution | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 2.457 mL | 12.285 mL | 24.57 mL |
5 mM | 0.4914 mL | 2.457 mL | 4.914 mL |
10 mM | 0.2457 mL | 1.2285 mL | 2.457 mL |
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )
Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.
Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.
Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Average Rating: 5
(Based on Reviews and 25 reference(s) in Google Scholar.)GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.
Required fields are marked with *