GSK J4 free base |
Catalog No.GC12997 |
GSK J4 free base is a potent dual inhibitor of H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A with IC50s of 8.6 and 6.6 μM, respectively. GSK J4 free base inhibits LPS-induced TNF-α production in human primary macrophages with an IC50 of 9 μM. GSK J4 is a cell permeable prodrug of GSK-J1. GSK J4 free base induces endoplasmic reticulum stress-related apoptosis.
Products are for research use only. Not for human use. We do not sell to patients.
Cas No.: 1373423-53-0
Sample solution is provided at 25 µL, 10mM.
GSK-J4 is a potent dual inhibitor of H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A with IC50s of 8.6 and 6.6 μM, respectively. GSK-J4 inhibits LPS-induced TNF-α production in human primary macrophages with an IC50 of 9 μM. GSK J4 is a cell permeable prodrug of GSK-J1[1][2][3].
GSK-J4 has cellular activity in Flag-JMJD3-transfected HeLa cells, in which GSK-J4 prevents the JMJD3-induced loss of nuclear H3K27me3 immunostaining. Administration of GSK-J4 increases total nuclear H3K27me3 levels in untransfected cells. GSK-J4 significantly reduces the expression of 16 of 34 LPS-driven cytokines, including tumour-necrosis factor-α (TNF-α)[1].GSK-J4 (5 μM; 48 hours) causes a more than 3-fold increase in mouse podocyte H3K27me3 content. H3K27me3 levels in cultured podocytes, GSK-J4 reduces Jagged-1 mRNA and Jagged-1 protein levels. Correspondingly, when exposed podocytes to the inducer of dedifferentiation TGF-β1, pretreatment with GSK-J4 preventes both the increase in intracellular N1-ICD levels and the increase in α-SMA and the decrease in podocin mRNA levels[2]. GSK-J4 (10, 25 nM) acts upon DCs promoting the differentiation of Treg cells, improving Treg stability and suppressive capacities, without affecting the differentiation of Th1 and Th17 cells[3].GSK-J4 inhibits JMJD3 expression that is induced by TGF-β1[4].GSK-J4 inhibits H3K4 demethylation at Xist, Nodal, and HoxC13 in female embryonic stem cells[5].
GSK-J4 Hydrochloride (10 mg/kg; i.p.; thrice-weekly for 10 weeks) attenuates the development of kidney disease in diabetic mice[2].GSK-J4 (0.5 mg/kg, i.p.) significantly reduces the severity and delays the onset of the disease of the mouse model of experimental autoimmune encephalomyelitis[3].
References:
[1]. Kruidenier L, et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 2012 Aug 16;488(7411):404-8.
[2]. Majumder S, et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest. 2018 Jan 2;128(1):483-499.
[3]. Donas C, et al. The histone demethylase inhibitor GSK-J4 limits inflammation through the induction of a tolerogenic phenotype on DCs. J Autoimmun. 2016 Dec;75:105-117.
[4]. Yapp C, et al. H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis. Arthritis Res Ther. 2016 Jul 7;18(1):158
[5]. Kamikawa YF, et al. Histone demethylation maintains Prdm14 and Tsix expression and represses xIst in embryonic stem cells. PLoS One. 2015 May 20;10(5):e0125626
[6]. Heinemann B, et al. Inhibition of demethylases by GSK-J1/J4. Nature. 2014 Oct 2;514(7520):E1-2
Cas No. | 1373423-53-0 | SDF | |
Chemical Name | ethyl 3-((6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-yl)amino)propanoate | ||
Canonical SMILES | CCOC(CCNC1=CC(N2CCC3=CC=CC=C3CC2)=NC(C4=CC=CC=N4)=N1)=O | ||
Formula | C24H27N5O2 | M.Wt | 417.46 |
Solubility | <41.75mg/ml in DMSO; <41.75mg/ml in ethanol | Storage | Store at -20°C |
General tips | Please select the appropriate solvent to prepare the stock solution according to the
solubility of the product in different solvents; once the solution is prepared, please store it in
separate packages to avoid product failure caused by repeated freezing and thawing.Storage method
and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored
at -20°C, please use it within 1 month. To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time. |
||
Shipping Condition | Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request. |
Prepare stock solution | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 2.3954 mL | 11.9772 mL | 23.9544 mL |
5 mM | 0.4791 mL | 2.3954 mL | 4.7909 mL |
10 mM | 0.2395 mL | 1.1977 mL | 2.3954 mL |
Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)
Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)
Calculation results:
Working concentration: mg/ml;
Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )
Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.
Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.
Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Average Rating: 5
(Based on Reviews and 8 reference(s) in Google Scholar.)GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.
Required fields are marked with *