Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Monoamine transporter>>Reserpine hydrochloride

Reserpine hydrochloride

Catalog No.GC14792

Blocker of VMAT

Products are for research use only. Not for human use. We do not sell to patients.

Reserpine hydrochloride Chemical Structure

Cas No.: 16994-56-2

Size Price Stock Qty
10mM (in 1mL DMSO)
$37.00
In stock
20mg
$55.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com


Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Description of Reserpine hydrochloride

Reserpine hydrochloride is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).

Reserpine hydrochloride is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine hydrochloride displays a significant on the density of dopamine D1 receptors (F2,12=8.81, p<0.01) in the rat striatum. The affinity (Kd) for the dopamine D1 and D2 receptors during withdrawal from acute and chronic administration of reserpine is not change[1]. IC50 values of 43.9 and 54.9 μM are obtained after 1 day of treatment with Reserpine hydrochloride in JB6 P+ and HepG2-C8 cells, respectively. Reserpine hydrochloride induces luciferase activity in a dose-dependent manner at concentrations ranging from 5 to 50 μM, and no significant induction is observed at concentrations lower than 5 μM. Results demonstrate that Reserpine hydrochloride (2.5 to 10 μM) also increases the protein expression of Nrf2, HO-1, and NQO1. Reserpine hydrochloride at concentrations of 2.5 to 10 μM decreases the mRNA expression of DNMT1, DNMT3a, and DNMT3b in a concentration-dependent manner in JB6 P+ cells after 7 days of treatment. Reserpine hydrochloride at 10 μM generates a significant difference for DNMT3a expression (p<0.05)[2].

Withdrawal (48 h) from chronic (14-day) but not acute Reserpine hydrochloride administration in a dose of 0.2 mg/kg i.p. produces a significant reduction of the immobility time (F2,18=3.68, p<0.05), but increases the climbing time (F2,18=4.48, p<0.02), and does not change the swimming time (F2,18=1.78; NS) in the forced swim test (FST) in rats[1]. Reserpine hydrochloride at a dose of 5 mg/kg body weight produces significant increase in the urinary excretion profile of vanillylmandelic acid (VMA) compare to control animals. The amount of 5-hydroxyindoleacetic acid (5-HIAA) excreted in animals treated with Reserpine is found to be more than in the control. Dose dependent hypotension is observed with Reserpine hydrochloride. Reserpine hydrochloride at doses of 0.5, 1, 5, 10 and 15 μg/kg produce significant (p<0.01) reduction in blood pressure compare to control[3].

References:
[1]. Antkiewicz-Michaluk L, et al. Withdrawal from repeated administration of a low dose of reserpine induced opposing adaptive changes in the noradrenaline and serotonin system function: a behavioral and neurochemical ex vivo and in vivo studies in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Mar 3;57:146-54.
[2]. Hong B, et al. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway. AAPS J. 2016 May;18(3):659-69.
[3]. Sreemantula S, et al. Reserpine methonitrate, a novel quaternary analogue of reserpine augments urinary excretion of VMA and 5-HIAA without affecting HVA in rats. BMC Pharmacol. 2004 Nov 16;4:30.

Protocol of Reserpine hydrochloride

Kinase experiment:

After incubation for 24 h, JB6 P+ cells (1×105 cells/10-cm dish) are treated with various concentrations of Reserpine hydrochloride. Whole cell lysates are prepared from the treated cells using radioimmunoprecipitation assay buffer supplemented with a protease inhibitor cocktail, and a BCA kit is used to determine protein concentrations[2].

Cell experiment:

JB6 P+ cells are seeded in 96-well plates containing Minimum essential media (MEM) at a density of 1×104 cells/mL (100 μL/well) for 1, 3, and 5 days, and HepG2-C8 cells are seeded in plates containing DMEM. After incubation for 24 h, the cells are treated with either DMSO or various concentrations of Reserpine hydrochloride. For JB6 P+ cells, the medium is changed every 2 days for the 3-day and 5-day treatments. Cell viability is assessed using a MTS assay kit according to the manufacturer’s instructions. The absorbance of the formazan product is read at 490 nm, and the cell viability is calculated and compared with the DMSO control group[2].

Animal experiment:

Albino rats of either sex weighing between 100 to 150 g are used in the study. They are acclimatized to the laboratory conditions for at least 10 days prior to the experiment and are provided with standard diet and water ad libitum with 12 h light and dark cycle. Animals are divided into different groups of six each and are housed individually in metabolic cages. Group 1: Control animals treated with DMSO intraperitoneally at a dose of 0.1 mL/100 g body weight. Group 2: Animals administered intraperitoneally with Reserpine hydrochloride at a dose of 5 mg/kg body weight. The 24 h urine samples from the point of drug administration are collected for each animal[3].

References:

[1]. Antkiewicz-Michaluk L, et al. Withdrawal from repeated administration of a low dose of reserpine induced opposing adaptive changes in the noradrenaline and serotonin system function: a behavioral and neurochemical ex vivo and in vivo studies in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2015 Mar 3;57:146-54.
[2]. Hong B, et al. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of Nrf2-Mediated Anti-oxidative Stress Pathway. AAPS J. 2016 May;18(3):659-69.
[3]. Sreemantula S, et al. Reserpine methonitrate, a novel quaternary analogue of reserpine augments urinary excretion of VMA and 5-HIAA without affecting HVA in rats. BMC Pharmacol. 2004 Nov 16;4:30.

Chemical Properties of Reserpine hydrochloride

Cas No. 16994-56-2 SDF
Chemical Name methyl (15R,18S,20R)-6,18-dimethoxy-17-(3,4,5-trimethoxybenzoyl)oxy-1,3,11,12,14,15,16,17,18,19,20,21-dodecahydroyohimban-19-carboxylate;hydrochloride
Canonical SMILES COC1C(CC2CN3CCC4=C(C3CC2C1C(=O)OC)NC5=C4C=CC(=C5)OC)OC(=O)C6=CC(=C(C(=C6)OC)OC)OC.Cl
Formula C33H41ClN2O9 M.Wt 645.14
Solubility ≥ 25mg/mL in DMSO Storage 4°C, protect from light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of Reserpine hydrochloride

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 1.5501 mL 7.7503 mL 15.5005 mL
5 mM 0.31 mL 1.5501 mL 3.1001 mL
10 mM 0.155 mL 0.775 mL 1.5501 mL
  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution) of Reserpine hydrochloride

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

Reviews

Review for Reserpine hydrochloride

Average Rating: 5 ★★★★★ (Based on Reviews and 20 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Reserpine hydrochloride

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.