Home>>Signaling Pathways>> GPCR/G protein>> LPL Receptor>>BMS-986278


Catalog No.: GC63895

BMS-986278 is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM.

Products are for research use only. Not for human use. We do not sell to patients.

BMS-986278 Chemical Structure

Cas No.:2170126-74-4

Size Price Stock Qty
10mM (in 1mL DMSO)
In stock
In stock
In stock
In stock

Customer Reviews

Based on customer reviews.

Tel: (626) 353-8530 Email: sales@glpbio.com

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:


BMS-986278 is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM.

[1]. Cheng PTW, et al. Murphy BJ. Discovery of an Oxycyclohexyl Acid Lysophosphatidic Acid Receptor 1 (LPA1) Antagonist BMS-986278 for the Treatment of Pulmonary Fibrotic Diseases. J Med Chem. 2021 Nov 11;64(21):15549-15581.

Chemical Properties

Cas No. 2170126-74-4 SDF Download SDF
Formula C22H31N5O5 M.Wt 445.51
Solubility Storage Store at -20°C
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Evaluation sample solution : ship with blue ice
All other available size: ship with RT , or blue ice upon request

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % saline

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL saline, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).


Research Update

Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA1) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD)

BMJ Open Respir Res 2021 Dec;8(1):e001026.PMID:34969771DOI:10.1136/bmjresp-2021-001026.

Introduction: Idiopathic pulmonary fibrosis (IPF) and non-IPF, progressive fibrotic interstitial lung diseases (PF-ILD), are associated with a progressive loss of lung function and a poor prognosis. Treatment with antifibrotic agents can slow, but not halt, disease progression, and treatment discontinuation because of adverse events is common. Fibrotic diseases such as these can be mediated by lysophosphatidic acid (LPA), which signals via six LPA receptors (LPA1-6). Signalling via LPA1 appears to be fundamental in the pathogenesis of fibrotic diseases. BMS-986278, a second-generation LPA1 antagonist, is currently in phase 2 development as a therapy for IPF and PF-ILD. Methods and analysis: This phase 2, randomised, double-blind, placebo-controlled, parallel-group, international trial will include adults with IPF or PF-ILD. The trial will consist of a 42-day screening period, a 26-week placebo-controlled treatment period, an optional 26-week active-treatment extension period, and a 28-day post-treatment follow-up. Patients in both the IPF (n=240) and PF-ILD (n=120) cohorts will be randomised 1:1:1 to receive 30 mg or 60 mg BMS-986278, or placebo, administered orally two times per day for 26 weeks in the placebo-controlled treatment period. The primary endpoint is rate of change in per cent predicted forced vital capacity from baseline to week 26 in the IPF cohort. Ethics and dissemination: This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles, and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. Trial registration number: NCT04308681.

Mechanism of hepatobiliary toxicity of the LPA1 antagonist BMS-986020 developed to treat idiopathic pulmonary fibrosis: Contrasts with BMS-986234 and BMS-986278

Toxicol Appl Pharmacol 2022 Mar 1;438:115885.PMID:35090952DOI:10.1016/j.taap.2022.115885.

In a Phase 2 clinical trial, BMS-986020, a lysophosphatidic acid receptor-1 (LPA1) antagonist, produced hepatobiliary toxicity (increased ALT, AST, and ALP; cholecystitis) and increases in plasma bile acids (BA). Nonclinical investigations conducted to identify a potential mechanism(s) for this toxicity examined BMS-986020 and two LPA1 antagonists structurally distinct from BMS-986020 (BMS-986234 and BMS-986278). BMS-986020 inhibited hepatic BA efflux transporters BSEP (IC50 1.8 μM), MRP3 (IC50 22 μM), and MRP4 (IC50 6.2 μM) and inhibited BA canalicular efflux in human hepatocytes (68% at 10 μM). BMS-986020 inhibited mitochondrial function (basal and maximal respiration, ATP production, and spare capacity) in human hepatocytes and cholangiocytes at ≥10 μM and inhibited phospholipid efflux in human hepatocytes (MDR3 IC50 7.5 μM). A quantitative systems toxicology analysis (DILIsym®), considering pharmacokinetics, BA homeostasis, mitochondrial function, oxidative phosphorylation, and reactive intermediates performed for BMS-986020 recapitulated clinical findings ascribing the effects to BA transporter and mitochondrial electron transport chain inhibition. BMS-986234 and BMS-986278 minimally inhibited hepatic BA transporters (IC50 ≥20 μM) and did not inhibit MDR3 activity (IC50 >100 μM), nor did BMS-986234 inhibit BA efflux (≤50 μM) or mitochondrial function (≤30 μM) (BMS-986278 not evaluated). Multiple mechanisms may be involved in the clinical toxicity observed with BMS-986020. The data indicate that this toxicity was unrelated to LPA1 antagonism since the mechanisms that likely influenced the adverse clinical outcome of BMS-986020 were not observed with equipotent LPA1 antagonists BMS-986234 and BMS-986278. This conclusion is consistent with the lack of hepatobiliary toxicity in nonclinical and clinical safety studies with BMS-986278.

Discovery of an Oxycyclohexyl Acid Lysophosphatidic Acid Receptor 1 (LPA1) Antagonist BMS-986278 for the Treatment of Pulmonary Fibrotic Diseases

J Med Chem 2021 Nov 11;64(21):15549-15581.PMID:34709814DOI:10.1021/acs.jmedchem.1c01256.

The oxycyclohexyl acid BMS-986278 (33) is a potent lysophosphatidic acid receptor 1 (LPA1) antagonist, with a human LPA1 Kb of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA1 antagonist clinical compound BMS-986020 (1), which culminated in the discovery of 33, are discussed. The detailed in vitro and in vivo preclinical pharmacology profiles of 33, as well as its pharmacokinetics/metabolism profile, are described. On the basis of its in vivo efficacy in rodent chronic lung fibrosis models and excellent overall ADME (absorption, distribution, metabolism, excretion) properties in multiple preclinical species, 33 was advanced into clinical trials, including an ongoing Phase 2 clinical trial in patients with lung fibrosis (NCT04308681).

The development of modulators for lysophosphatidic acid receptors: A comprehensive review

Bioorg Chem 2021 Dec;117:105386.PMID:34695732DOI:10.1016/j.bioorg.2021.105386.

Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of cellular activities that regulate a diverse array of biological functions. They recognize two types of G protein-coupled receptors (LPARs): LPA1-3 receptors and LPA4-6 receptors that belong to the endothelial gene (EDG) family and non-endothelial gene family, respectively. In recent years, the LPA signaling pathway has captured an increasing amount of attention because of its involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular diseases and neuropathic pain, making it a promising target for drug development. While no drugs targeting LPARs have been approved by the FDA thus far, at least three antagonists have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic potential in various diseases.

Structure dependence and species sensitivity of in vivo hepatobiliary toxicity with lysophosphatidic acid receptor 1 (LPA1) antagonists

Toxicol Appl Pharmacol 2022 Mar 1;438:115846.PMID:34974053DOI:10.1016/j.taap.2021.115846.

BMS-986020, BMS-986234 and BMS-986278, are three lysophosphatidic acid receptor 1 (LPA1) antagonists that were or are being investigated for treatment of idiopathic pulmonary fibrosis (IPF). Hepatobiliary toxicity (elevated serum AST, ALT, and ALP, plasma bile acids [BAs], and cholecystitis) was observed in a Phase 2 clinical trial with BMS-986020, and development was discontinued. In dogs and rats, the species used for the pivotal toxicology studies, there was no evidence of hepatobiliary toxicity in the dog while findings in the rat were limited to increased plasma BAs levels (6.1× control), ALT (2.9×) and bilirubin (3.4×) with no histopathologic correlates. Since neither rats nor dogs predicted clinical toxicity, follow-up studies in cynomolgus monkeys revealed hepatobiliary toxicity that included increased ALT (2.0× control) and GLDH (4.9×), bile duct hyperplasia, cholangitis, cholestasis, and cholecystitis at clinically relevant BMS-986020 exposures with no changes in plasma or liver BAs. This confirmed monkey as a relevant species for identifying hepatobiliary toxicity with BMS-986020. In order to assess whether the toxicity was compound-specific or related to LPA1 antagonism, two structurally distinct LPA1 antagonists (BMS-986234 and BMS-986278), were evaluated in rat and monkey. There were no clinical or anatomic pathology changes indicative of hepatobiliary toxicity. Mixed effects on plasma BAs in both rat and monkey has made this biomarker not a useful predictor of the hepatobiliary toxicity. In conclusion, the nonclinical data indicate the hepatobiliary toxicity observed clinically and in monkeys administered BMS-986020 is compound specific and not mediated via antagonism of LPA1.


Review for BMS-986278

Average Rating: 5 ★★★★★ (Based on Reviews and 33 reference(s) in Google Scholar.)

5 Star
4 Star
3 Star
2 Star
1 Star
Review for BMS-986278

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.