Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Sodium Channel>>GS967

GS967

Catalog No.GC10830

inhibitor of cardiac late sodium current

Products are for research use only. Not for human use. We do not sell to patients.

GS967 Chemical Structure

Cas No.: 1262618-39-2

Size Price Stock Qty
10mM (in 1mL DMSO)
$54.00
In stock
5mg
$50.00
In stock
10mg
$77.00
In stock
50mg
$216.00
In stock
100mg
$330.00
In stock
168mg
$773.00
In stock
328mg
$1,391.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com


Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Description of GS967

GS967 is a potent, selective and novel inhibitor of cardiac late sodium current (late INa) with IC50=0.13 μM in ventricular myocytes and IC50=0.21μM in isolated hearts. [1]

When Na+ channels in myocytes fail to inactivate after opening, Na+ influx continues throughout the AP plateau. The resulting Na+ current (INa) is referred to as late INa. Its magnitude is increased in many pathologic conditions, such as in the failing and/or ischemic heart, in the heart exposed to oxidative stress, and in hearts of patients with congenital long QT3 syndromes. [1]

In rabbit isolated ventricular myocytes, inhibition of peak INa by GS967 is in a concentration- and voltage-dependent manner with minimal use-dependent, it also decreases the Na+ and Ca2+ overload. In rabbit-isolated heart, GS967 abolishes TdP Induced by ATX-II or E-4031. [1]

In anesthetized rabbit, GS967 reduces MAPD90 but did not alter cardiac conduction time; it also prevents the Induction of arrhythmic activity and TdP by clofilium and decreases the Incidence of ischemia-Induced arrhythmias. [1]

Reference:
1.  Belardinelli L, Liu G, Smith-Maxwell C et al. A novel, potent, and selective inhibitor of
cardiac late sodium current suppresses experimental arrhythmias.  J Pharmacol Exp
Ther.  2013 Jan;344(1):23-32.

Protocol of GS967

Animal experiment:

Rats: Ventricular tachycardia or fibrillation are induced either by local aconitine injection (50 μg) in the left ventricular muscle of adult male rats or by arterial perfusion of 0.1 mM hydrogen peroxide in aged male rats. The left ventricular epicardial surface of the isolated-perfused hearts is optically mapped using fluorescent voltage-sensitive dye, and microelectrode recordings of action potentials are made adjacent to the aconitine injection site. The suppressive and preventive effects of GS967 (1 μM) against EAD/DAD-mediated ventricular tachycardia or fibrillation are then determined[2]. Rabbits: To determine the effect of GS967 on the inducibility of TdP by clofilium in the presence of methoxamine, rabbits are first treated with either vehicle or GS967 (in randomized manner) given as a 60 μg/kg bolus, followed by a 16 μg/kg/min infusion that is maintained for the duration of an experiment. After 10 minutes, methoxamine is infused intravenously at 15 μg/kg/min, followed 10 minutes later by clofilium at 100 nmol/kg/min. The incidences of premature ventricular contractions (PVCs), ventricular tachycardia (VT; defined as three or more consecutive abnormal beats), and TdP are determined from the ECG recordings[1].

References:

[1]. Belardinelli L, et al. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J Pharmacol Exp Ther. 2013 Jan;344(1):23-32.
[2]. Wei X, et al. Pre- and Delayed Treatments With Ranolazine Ameliorate Ventricular Arrhythmias and Nav1.5 Downregulation in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol. 2016 Oct;68(4):269-279.
[3]. Potet F, et al. Use-Dependent Block of Human Cardiac Sodium Channels by GS967. Mol Pharmacol. 2016 Jul;90(1):52-60.
[4]. Bonatti R, et al. Selective late sodium current blockade with GS-458967 markedly reduces ischemia-induced atrial and ventricular repolarization alternans and ECG heterogeneity. Heart Rhythm. 2014 Oct;11(10):1827-35.

Chemical Properties of GS967

Cas No. 1262618-39-2 SDF
Chemical Name 6-(4-(trifluoromethoxy)phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine
Canonical SMILES FC(F)(F)C1=NN=C2C=CC(C3=CC=C(OC(F)(F)F)C=C3)=CN21
Formula C14H7F6N3O M.Wt 347.22
Solubility ≥ 13.35mg/mL in DMSO Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of GS967

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 2.88 mL 14.4001 mL 28.8002 mL
5 mM 0.576 mL 2.88 mL 5.76 mL
10 mM 0.288 mL 1.44 mL 2.88 mL
  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution) of GS967

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

Reviews

Review for GS967

Average Rating: 5 ★★★★★ (Based on Reviews and 15 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for GS967

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.