Home>>Signaling Pathways>> Proteases>> HSP>>Retaspimycin

Retaspimycin

Catalog No.GC10327

Products are for research use only. Not for human use. We do not sell to patients.

Retaspimycin Chemical Structure

Cas No.: 857402-23-4

Size Price Stock Qty
100mg
$834.00
Please Inquire
50mg
$1.00
In stock
10mg
$230.00
In stock
5mg
$146.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment:

Cell proliferation is studied using the cell proliferation reagent WST-1. Briefly, 8 × 103 cells are seeded in triplicate in 96-well plates and treated for 5 days, with either trastuzumab or Retaspimycin as indicated. Viable cells are estimated on the basis of their ability to metabolize tetrazolium salt WST-1 to formazan by mitochondrial dehydrogenases. Quantification of the formazan dye directly correlates with the number of metabolically active cells and is analyzed by a scanning microplate reader. Results are shown as means ± SE[3].

Animal experiment:

RPMI-8226 cells are harvested from cultures grown in vitro in RPMI medium 1640 supplemented with heat-inactivated 10% (wt/vol) FBS and 100 units/mL penicillin/streptomycin at 37°C under a humidified 95%/5% (vol/vol) mixture of air and CO2. Cells are washed twice by using sterile Hepes-buffered saline (HBS) and suspended in HBS to a concentration of 1 × 108 viable cells per mL. Twelve female Nu/Nu nude mice (≈20 g) are used in the assay. RPMI-8226 cells (1 × 107 cells per mouse) are implanted in the right flank. When tumor volume reaches ≈200-500 mm3 (≈4 weeks postimplantation), animals receive a single i.v. dose of 50 mg/kg Retaspimycin via the tail vein. At 4, 24, and 48 h posttreatment, the animals are killed with carbon dioxide, and tumors are removed and stored at −80°C until analyzed. Four animals are used for each time point. Tumor samples are homogenized in an ice-cold, nitrogen-sparged 1:1 solution of MeOH:150 mM citrate, 0.2% (wt/vol) EDTA, and 0.2% (wt/vol) ascorbate (pH 3.0) for 1 min in an ice/water bath with a homogenizer at 17,500 rpm. Samples are centrifuged for 5 min at 4°C at 18,000 × g. The supernatants are diluted 1:1 with ice-cold, nitrogen-sparged 75 mM citrate, 0.1% (wt/vol) EDTA, and 0.1% (wt/vol) ascorbate (pH 3) containing 25 ng/mL deuterated 17-AAG as internal standard and analyzed by LC-MS/MS analysis. The standard curve is prepared for Retaspimycin, 17-AAG, and 17-AG in 1:1 MeOH:150 mM citrate, 0.2% (wt/vol) EDTA, and 0.2% (wt/vol) ascorbate (pH 3.0); diluted 1:1 with ice-cold, nitrogen-sparged 75 mM citrate, 0.1% (wt/vol) EDTA, and 0.1% (wt/vol) ascorbate (pH 3.0) containing 25 ng/mL deuterated 17-AAG as internal standard; and analyzed by LC-MS/MS[1].

References:

[1]. Sydor JR, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17408-13. Epub 2006 Nov 7.
[2]. Floris G, et al. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther. 2011 Oct;10(10):1897-908.
[3]. Scaltriti M, et al. Antitumor activity of the Hsp90 inhibitor IPI-504 in HER2-positive trastuzumab-resistant breast cancer. Mol Cancer Ther. 2011 May;10(5):817-24.

Background

Retaspimycin is a water-soluble hydroquinone hydrochloride salt inhibitor of Hsp90 [1].

Hsp90 is a member of the Hsp family. The other members of this protein family are Hsp40, Hsp70 and so on. These proteins act as molecule chaperons and participate in many cellular processes. When cells are exposed in stress, some proteins become unstable, accumulate to form aggregates and subsequently cause cell apoptosis. In this situation, Hsps will help their client proteins folding correctly, accompany them to be translocated to the correct location and thus prevent the cells from apoptosis. Hsps are required for cancer cells development. They are found to overexpress in a variety of cancer cells. Therefore, the inhibitors of Hsp are thought to be attractive therapy for cancer treatment. As an inhibitor of Hsp90, retaspimycin works through binding to the ATP-binding pocket of Hsp90 N-terminal [1].

In both RPMI-8826 and MM1.S cells, treatment of retaspimycin resulted in degradation of the Hsp90 client proteins, for instance, c-RAF and Her2. It also caused increased levels of Hsp70. Besides that, retaspimycin is found to prevent RPMI-8826 cells from secreting the immunoglobulin light chain. In breast cancer cells which are resistant to trastuzumab, treatment of retaspimycin potently caused Her2 degradation and resulted in tumor growth suppression and cell apoptosis [1].

Retaspimycin is often used as combination therapy with other drugs in cancer treatment. In mice bearing GIST-882 (gastrointestinal stromal tumor) xenografts, the administration of retaspimycin associated with imatinib showed a significant effect with a 66% tumor regression. In mice bearing GIST-PSW xenografts, both the combination treatment of retaspimycin and imatinib or sunitinib showed effective antitumor activities in reducing tumor burden. When used alone, retaspimycin reduced tumor volumes by 84% and 69% in GIST-PSW and GIST-882 mice models, respectively. Moreover, retaspimycin is found to decrease the mitotic activity in these two models. However, the antimitotic effects of retaspimycin were less significant than of imatinib or sunitinib or the combination treatment [2].

References:
[1].  Hanson B E, Vesole D H. Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. 2009.
[2].  Floris G, Debiec-Rychter M, Wozniak A, et al. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Molecular cancer therapeutics, 2011, 10(10): 1897-1908.

Chemical Properties

Cas No. 857402-23-4 SDF
Chemical Name [(3R,5S,6R,7S,8E,10S,11S,12Z,14E)-6,20,22-trihydroxy-5,11-dimethoxy-3,7,9,15-tetramethyl-16-oxo-21-(prop-2-enylamino)-17-azabicyclo[16.3.1]docosa-1(22),8,12,14,18,20-hexaen-10-yl] carbamate
Canonical SMILES CC1CC(C(C(C=C(C(C(C=CC=C(C(=O)NC2=CC(=C(C(=C2O)C1)NCC=C)O)C)OC)OC(=O)N)C)C)O)OC
Formula C31H45N3O8 M.Wt 587.7
Solubility Soluble in DMSO Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 1.7015 mL 8.5077 mL 17.0155 mL
5 mM 0.3403 mL 1.7015 mL 3.4031 mL
10 mM 0.1702 mL 0.8508 mL 1.7015 mL
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Reviews

Review for Retaspimycin

Average Rating: 5 ★★★★★ (Based on Reviews and 30 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Retaspimycin

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.