Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>β-Nicotinamide mononucleotide

β-Nicotinamide mononucleotide (Synonyms: βNMN)

Catalog No.GC16971

β-nicotinamide mononucleotide is a product of the nicotinamide phosphoribosyltransferase (NAMPT) reaction and a key NAD+ intermediate.

Products are for research use only. Not for human use. We do not sell to patients.

β-Nicotinamide mononucleotide Chemical Structure

Cas No.: 1094-61-7

Size Price Stock Qty
100mg
$37.00
In stock
500mg
$71.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 1 publications

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1]:

Cell lines

Hepa1-6 cells

Preparation Method

β-Nicotinamide mononucleotide was added to the cell medium

Reaction Conditions

0.5-1 mMβ-Nicotinamide mononucleotide

Applications

Intracellular NAD + levels were significantly reduced by knocking down or knocking down Nampt or treated with the Nampt inhibitor FK866, whereas NAD + levels were significantly increased by supplementation with NAD + precursors NAM or β-Nicotinamide mononucleotide.

Animal experiment [2]:

Animal models

Nampt+/- female mice

Preparation Method

For GTTs, mice were injected with PBS or β-Nicotinamide mononucleotide (500 mg/kg body weight) and fasted for 14 hrs; dextrose (3 g/kg body weight) was then injected intraperitoneally.

Dosage form

500 mg/kg β-Nicotinamide mononucleotide for 0、15、30、60,120min

Applications

After β-Nicotinamide mononucleotide administration, there was no difference in blood glucose levels in GTTs between Nampt+/- and control female mice. In addition, β-Nicotinamide mononucleotide-treated Nampt+/- and control mice also had similar plasma insulin levels at each time point. β-Nicotinamide mononucleotide administration corrects the defect in GSIS observed in Nampt+/- mice.

References:

[1]: Lv H, Lv G, et,al. NAD+ Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab. 2021 Jan 5;33(1):110-127.e5. doi: 10.1016/j.cmet.2020.10.021. Epub 2020 Nov 9. PMID: 33171124.
[2]: Revollo JR, KÖrner A, et,al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007 Nov;6(5):363-75. doi: 10.1016/j.cmet.2007.09.003. PMID: 17983582; PMCID: PMC2098698.

Background

β-nicotinamide mononucleotide is a product of the nicotinamide phosphoribosyltransferase (NAMPT) reaction and a key NAD+ intermediate. The pharmacological activities of β-nicotinamide mononucleotide include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity[1].

Intracellular NAD + levels were significantly reduced by knocking down or knocking down Nampt or treated with the Nampt inhibitor FK866, whereas NAD + levels were significantly increased by supplementation with NAD + precursors NAM or β-Nicotinamide mononucleotide [3].Treatment of β-nicotinamide mononucleotide, a precursor of NAD+, to HEK293 cells activated and improved the rate of mtDNA replication by increasing nucleotides in mitochondria and decreasing their degradation products: nucleosides. β-Nicotinamide mononucleotide metabolism plays a role in supporting mtDNA replication by maintaining the nucleotide pool balance in the mitochondria[7].

After β-Nicotinamide mononucleotide administration, there was no difference in blood glucose levels in GTTs between Nampt+/- and control female mice. In addition, β-Nicotinamide mononucleotide-treated Nampt+/- and control mice also had similar plasma insulin levels at each time point. β-Nicotinamide mononucleotide administration corrects the defect in GSIS observed in Nampt+/- mice[2]. β-nicotinamide mononucleotide ameliorates glucose intolerance by restoring NAD+ levels in HFD-induced T2D mice. β-nicotinamide mononucleotide also enhances hepatic insulin sensitivity and restores gene expression related to oxidative stress, inflammatory response, and circadian rhythm, partly through SIRT1 activation[4].In a mouse model induced by doxorubicin administered in divided low doses as in the clinics, supplementing mice with a precursor of NAD+ prevented the mtDNA depletion and cardiac dysfunction[5].When investigated whether β-Nicotinamide mononucleotide is superior to nicotinamide (Nam) as a precursor of NAD+ in whole animal experiments. β-Nicotinamide mononucleotide is retained in the body for longer than Nam[6].

References:
[1]: Poddar SK, Sifat AE, et,al. Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules. 2019 Jan 21;9(1):34. doi: 10.3390/biom9010034. PMID: 30669679; PMCID: PMC6359187.
[2]: Revollo JR, KÖrner A, et,al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007 Nov;6(5):363-75. doi: 10.1016/j.cmet.2007.09.003. PMID: 17983582; PMCID: PMC2098698.
[3]: Lv H, Lv G, et,al. NAD+ Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion. Cell Metab. 2021 Jan 5;33(1):110-127.e5. doi: 10.1016/j.cmet.2020.10.021. Epub 2020 Nov 9. PMID: 33171124.
[4]:Yoshino J, Mills KF, et,al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011 Oct 5;14(4):528-36. doi: 10.1016/j.cmet.2011.08.014. PMID: 21982712; PMCID: PMC3204926.
[5]: Li J, Wang PY, et,al. p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19626-19634. doi: 10.1073/pnas.1904979116. Epub 2019 Sep 5. PMID: 31488712; PMCID: PMC6765288.
[6]: Kawamura T, Mori N, et,al. β-Nicotinamide Mononucleotide, an Anti-Aging Candidate Compound, Is Retained in the Body for Longer than Nicotinamide in Rats. J Nutr Sci Vitaminol (Tokyo). 2016;62(4):272-276. doi: 10.3177/jnsv.62.272. PMID: 27725413.
[7]:Cros C, Margier M, et,al. Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis. Front Mol Biosci. 2022 Jun 27;9:895028. doi: 10.3389/fmolb.2022.895028. PMID: 35832733; PMCID: PMC9271973.

Chemical Properties

Cas No. 1094-61-7 SDF
Synonyms βNMN
Chemical Name ((2R,3S,4R,5R)-3,4-dihydroxy-5-(3-(hydroxy(imino)methyl)pyridin-1-ium-1-yl)tetrahydrofuran-2-yl)methyl hydrogen phosphate
Canonical SMILES N=C(O)C1=C[N+]([C@@]2([H])[C@@](O)([H])[C@@](O)([H])[C@@](O2)([H])COP(O)([O-])=O)=CC=C1
Formula C11H16N2O8P M.Wt 334.22
Solubility ≥ 33.4mg/mL in Water Storage 4°C, protect from light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Related Video

    Beta-Nicotinamide mononucleotide-GlpBio

Research Update

β-nicotinamide mononucleotide (NMN) production in Escherichia coli

Diabetes is a chronic and progressive disease with continuously increasing prevalence, rising financial pressure on the worldwide healthcare systems. Recently, the insulin resistance, hallmark of type 2 diabetes, was cured in mice treated with NAD+ precursor β-nicotinamide mononucleotide (NMN), no toxic effects being reported. However, NMN has a high price tag, more cost effective production methods are needed. This study proposes a biotechnological NMN production method in Escherichia coli. We show that bicistronic expression of recombinant nicotinamide phosphoribosyl transferase (Nampt) and phosphoribosyl pyrophosphate (PRPP) synthetase in the presence of nicotinamide (NAM) and lactose may be a successful strategy for cost effective NMN production. Protein expression vectors carrying NAMPT gene from Haemophilus ducreyi and PRPP synthetase from Bacillus amyloliquefaciens with L135I mutation were transformed in Escherichia coli BL21(DE3)pLysS. NMN production reached a maximum of 15.42 mg per L of bacterial culture (or 17.26 mg per gram of protein) in these cells grown in PYA8 medium supplemented with 0.1% NAM and 1% lactose.

β-Nicotinamide Mononucleotide (NMN) Administrated by Intraperitoneal Injection Mediates Protection Against UVB-Induced Skin Damage in Mice

Objective: Ultraviolet light is an important environmental factor that induces skin oxidation, inflammation, and other diseases. Nicotinamide mononucleotide (NMN) has the effect of anti-oxidation and improving various physiological processes. This study explores the protective effect of NMN monomers given via intraperitoneal injection on UVB-induced photodamage.
Methods: We used a murine model of UVB-induced photodamage to evaluate the effect of an NMN monomer on photoaging skin by assessing skin and liver tissue sections, serum and skin oxidative stress levels, inflammatory markers, mRNA expression, and protein expression of skin- and liver-related genes.
Results: The results showed that NMN treatment blocked UVB-induced photodamage in mice, maintaining normal structure and amount of collagen fibers, normal thickness of epidermis and dermis, reducing the production of mast cells, and maintaining complete organized skin structure. NMN intraperitoneal injection also maintained the normal morphology of the mouse liver after UVB exposure. Meanwhile, NMN intraperitoneal injection was found to increase antioxidant ability and regulate the proinflammatory response of the skin and liver to UVB irradiation by enhancing the activity of antioxidant enzymes, release of anti-inflammatory cytokines, reduction of hydrogen peroxide production (H2O2), and decreased inflammatory cytokines. Furthermore, RT-qPCR results indicated that NMN reduced oxidative stress of skin and liver by promoting the activation of the AMP-activated protein kinase (AMPK) signaling pathway and further increasing the expression of downstream antioxidant genes of AMPK. RT-qPCR results also revealed that NMN treatment could downregulate the mRNA expression of interleukin (IL)-6, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, and upregulate NF-kappa-B inhibitor-α (IκB-α) and interleukin (IL)-10 by inhibiting the activation of nuclear factor-κBp65 (NFκB-p65). Finally, NMN upregulated AMPK, IκB-α, SOD1, and CAT in the skin and downregulated NF-κBp65 protein expression, which is in line with the RT-qPCR results.
Conclusion: Based on the above results, NMN monomer treatment with intraperitoneal injection also block the photodamage caused by UVB irradiation in mice by regulating the oxidative stress response and inflammatory response.

Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women

A decrease in the intracellular level of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for metabolic activity, causes various age-related diseases and metabolic abnormalities. Both in-vivo and in-vitro studies have shown that increasing certain NAD+ levels in cell or tissue by supplementing nicotinamide mononucleotide (NMN), a precursor of NAD+, alleviates age-related diseases and metabolic disorders. In recent years, several clinical trials have been performed to elucidate NMN efficacy in humans. However, previous clinical studies with NMN have not reported on the safety of repeated daily oral administration of ≥ 1000 mg/shot in healthy adult men and women, and human clinical trials on NMN safety are limited. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to evaluate the safety of 1250 mg of β-NMN administered orally once daily for up to 4 weeks in 31 healthy adult men and women aged 20-65 years. Oral administration of β-NMN did not result in changes exceeding physiological variations in multiple clinical trials, including anthropometry, hematological, biochemical, urine, and body composition analyses. Moreover, no severe adverse events were observed during the study period. Our results indicate that β-NMN is safe and well-tolerated in healthy adult men and women an oral dose of 1250 mg once daily for up to 4 weeks.Trial registration Clinicaltrials.gov Identifier: UMIN000043084. Registered 21/01/2021. https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000049188 .

The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial

In animal studies, β-nicotinamide mononucleotide (NMN) supplementation increases nicotinamide adenine dinucleotide (NAD) concentrations and improves healthspan and lifespan with great safety. However, it is unclear if these effects can be transferred to humans. This randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial included 80 middle-aged healthy adults being randomized for a 60-day clinical trial with once daily oral dosing of placebo, 300 mg, 600 mg, or 900 mg NMN. The primary objective was to evaluate blood NAD concentration with dose-dependent regimens. The secondary objectives were to assess the safety and tolerability of NMN supplementation, next to the evaluation of clinical efficacy by measuring physical performance (six-minute walking test), blood biological age (Aging.Ai 3.0 calculator), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and subjective general health assessment [36-Item Short Form Survey Instrument (SF-36)]. Statistical analysis was performed using the Per Protocol analysis with significant level set at p = 0.05. All 80 participants completed the trial without trial protocol violation. Blood NAD concentrations were statistically significantly increased among all NMN-treated groups at day 30 and day 60 when compared to both placebo and baseline (all p ≤ 0.001). Blood NAD concentrations were highest in the groups taking 600 mg and 900 mg NMN. No safety issues, based on monitoring adverse events (AEs), laboratory and clinical measures, were found, and NMN supplementation was well tolerated. Walking distance increase during the six-minute walking test was statistically significantly higher in the 300 mg, 600 mg, and 900 mg groups compared to placebo at both days 30 and 60 (all p < 0.01), with longest walking distances measured in the 600 mg and 900 mg groups. The blood biological age increased significantly in the placebo group and stayed unchanged in all NMN-treated groups at day 60, which resulted in a significant difference between the treated groups and placebo (all p < 0.05). The HOMA-IR showed no statistically significant differences for all NMN-treated groups as compared to placebo at day 60. The change of SF-36 scores at day 30 and day 60 indicated statistically significantly better health of all three treated groups when compared to the placebo group (p < 0.05), except for the SF-36 score change in the 300 mg group at day 30. NMN supplementation increases blood NAD concentrations and is safe and well tolerated with oral dosing up to 900 mg NMN daily. Clinical efficacy expressed by blood NAD concentration and physical performance reaches highest at a dose of 600 mg daily oral intake. This trial was registered with ClinicalTrials.gov, NCT04823260, and Clinical Trial Registry - India, CTRI/2021/03/032421.

Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing

The age-dependent decline in remyelination potential of the central nervous system during ageing is associated with a declined differentiation capacity of oligodendrocyte progenitor cells (OPCs). The molecular players that can enhance OPC differentiation or rejuvenate OPCs are unclear. Here we show that, in mouse OPCs, nuclear entry of SIRT2 is impaired and NAD+ levels are reduced during ageing. When we supplement β-nicotinamide mononucleotide (β-NMN), an NAD+ precursor, nuclear entry of SIRT2 in OPCs, OPC differentiation, and remyelination were rescued in aged animals. We show that the effects on myelination are mediated via the NAD+-SIRT2-H3K18Ac-ID4 axis, and SIRT2 is required for rejuvenating OPCs. Our results show that SIRT2 and NAD+ levels rescue the aged OPC differentiation potential to levels comparable to young age, providing potential targets to enhance remyelination during ageing.

Reviews

Review for β-Nicotinamide mononucleotide

Average Rating: 5 ★★★★★ (Based on Reviews and 3 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for β-Nicotinamide mononucleotide

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.