Home>>Signaling Pathways>> Cardiovascular>>Adrenomedullin (1-12), human

Adrenomedullin (1-12), human

(Synonyms: H2N-Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-OH ) Catalog No.: GP10113

An N-terminal fragment of adrenomedullin

Products are for research use only. Not for human use. We do not sell to patients.

Adrenomedullin (1-12), human Chemical Structure

Size Price Stock Qty
5mg
$35.00
In stock
10mg
$56.00
In stock
25mg
$76.00
In stock

Customer Reviews

Based on customer reviews.

Tel: (626) 353-8530 Email: sales@glpbio.com

Sample solution is provided at 25 µL, 10mM.

Product Documents

Quality Control & SDS

View current batch:

Background

Adrenomedullin (AM) (1-12), human (C64H100N22O19S1), is a peptide with the sequence Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg. It was first discovered to be associated with pheochromocytoma, a tumor arising from adrenal medulla, in 1993. AM was initially identified as a vasodilator, and as such, it has the ability to relax vascular tone. Previous research cited it as the most potent endogenous vasodilatory peptide found in the body. Other effects of AM include the increase of cell tolerance to oxidative stress and hypoxic injury and angiogenesis. AM is seen as a positive influence in diseases such as hypertension, myocardial infarction, chronic obstructive pulmonary disease and other cardiovascular conditions.

Chemical Properties

Cas No. SDF
Synonyms H2N-Tyr-Arg-Gln-Ser-Met-Asn-Asn-Phe-Gln-Gly-Leu-Arg-OH
Canonical SMILES N[C@@H](CC1=CC=C(O)C=C1)C(N[C@@H](CCCNC(N)=N)C(N[C@@H](CCC(N)=O)C(N[C@@H](CO)C(N[C@@H](CCSC)C(N[C@@H](CC(N)=O)C(N[C@@H](CC(N)=O)C(N[C@@H](CC2=CC=CC=C2)C(N[C@@H](CCC(N)=O)C(NCC(N[C@@H](CC(C)C)C(N[C@@H](CCCNC(N)=N)C(O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O
Formula C64H100N22O19S M.Wt 1513.68
Solubility ≥151.3mg/mL in DMSO Storage Store at -20°C
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Evaluation sample solution : ship with blue ice
All other available size: ship with RT , or blue ice upon request

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % saline
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL saline, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

Research Update

Specific adrenomedullin binding sites in the human brain

Binding sites for adrenomedullin in human brain were investigated and characterized by radioligand binding. Specific binding sites for adrenomedullin were present in every region of human brain (cerebral cortex, cerebellum, thalamus, hypothalamus, pons and medulla oblongata) obtained at autopsy. Despite the homology with calcitonin gene-related peptide (CGRP), CGRP was a poor inhibitor of [125I]adrenomedullin binding (IC50 > 1 microM) compared with adrenomedullin(1-52) (IC50 = 1.2 +/- 0.5 nM, mean +/- SEM, n = 3). Three adrenomedullin fragments, adrenomedullin(1-12), adrenomedullin(22-52), and adrenomedullin(13-52), were also poor inhibitors of the binding (IC50 = 0.3 microM), suggesting that the whole molecule of adrenomedullin(1-52) is required for binding to the receptor. Scatchard plots of [125I]adrenomedullin binding in human brain (cerebral cortex) gave a dissociation constant of 0.17 +/- 0.03 nM and maximal binding of 99.3 +/- 1.9 fmol/mg protein (n = 5). These findings suggest that specific adrenomedullin binding sites that differ from the CGRP receptors exist in human brain. This indicates a possible novel neurotransmitter/neuromodulator role for adrenomedullin in human brain.

Pulmonary vasodilation to adrenomedullin: a novel peptide in humans

The present study investigates the effects of human adrenomedullin (ADM) on the pulmonary vascular bed of isolated, blood-perfused rat lung. Because pulmonary blood flow and left atrial pressure were constant, changes in pulmonary arterial pressure directly reflect changes in pulmonary vascular resistance. Under conditions of resting (low) pulmonary vasomotor tone, intra-arterial bolus injections of ADM-(1-52) and two truncated sequences of ADM-(1-52) [ADM-(1-12) and ADM-(13-52)] did not alter pulmonary arterial pressure. When pulmonary vasomotor tone was increased by U-46619, a thromboxane A2 mimic, intra-arterial bolus injections of ADM-(1-52) and ADM-(13-52) at similar doses produced similar, dose-dependent reductions in pulmonary arterial pressure. On a molar basis, ADM-(1-52) had greater pulmonary vasodilator activity than isoproterenol. In contrast, ADM-(1-12) had no activity. When pulmonary vasomotor tone was actively increased to the same level using KCl, the pulmonary vasodilator activity of ADM-(13-52) was decreased 10-fold. The present data demonstrate that ADM-(1-52) dilates the pulmonary vascular bed and suggest that the pulmonary vasodilator activity of ADM is greater on pulmonary blood vessels preconstricted through a receptor-dependent mechanism. Because meclofenamate, nitro-L-arginine methyl ester, methysergide, BW A-1433U83, U-37883A, and calcitonin gene-related peptide [CGRP-(8-37)], a CGRP-receptor antagonist, did not alter the pulmonary vasodilator response to ADM-(1-52), the present data suggest that ADM dilates the pulmonary vascular bed independently of cyclooxygenase products, endothelium-derived relaxation factor, serotoninergic receptors, adenosine1 purinoreceptors, ATP-dependent potassium channels, and CGRP receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

Reviews

Review for Adrenomedullin (1-12), human

Average Rating: 5 ★★★★★ (Based on Reviews and 30 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for Adrenomedullin (1-12), human

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.