Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Chloride Channel>>NPPB

NPPB (Synonyms: HOE 144, Hoechst 144)

Catalog No.GC14268

inhibitor of chloride channel

Products are for research use only. Not for human use. We do not sell to patients.

NPPB Chemical Structure

Cas No.: 107254-86-4

Size Price Stock Qty
10mM (in 1mL DMSO)
$35.00
In stock
50mg
$130.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com


Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 1 publications

Description of NPPB

NPPB, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, is a potent inhibitor of chloride channel with IC50 of 80 nM for the short circuit current.[1]
Chloride channel blockers possess several sites of interaction, including the negatively charged carboxylate group, the secondary amine group which probably carries a positive partial charge, and for the very potent agents like NPPB an additional negative partial charge at the -NO2 substituent. In addition, an apolar interaction with a cycloaryl residue is necessary, and this site of interaction has a specific spacing from the secondary amino nitrogen.[1]
NPPB was evaluated for the activity on the equivalent short circuit current, corresponding to the secondary active transport of Cl- and measurements of the voltage across the basolateral membrane. The result revealed that NPPB possessed a good potency with IC50 of 80 nM for inhibiting the short circuit current. Furthermore, NPPB was also tested for its activity on various anion channels. Adopting freshly-isolated cells from the rat portal vein, the effects of NPPB were investigated on evoked and spontaneous currents by use of conventional whole-cell recording and perforated-patch techniques. At a holding potential of -60 mV in potassium-free, caesium-containing solutions, NPPB (10 μM) inhibited Ca-sensitive chloride currents (ICI(Ca)) evoked by caffeine (10 mM) and by noradrenaline (10μM) by the extend of 58% and 96%, respectively. In addition, at a holding potential of -2 mV in potassium -containing solutions, NPPB (10 μM) inhibited charybdotoxin-sensitive potassium-currents (IBK(Ca)) induced by noradrenaline (10 μM) and acetylcholine (10 μM) by approximately 90%. NPPB's inhibitory effects of volume-activated taurine, glucose, and uridine influxes was studied. The IC50 for the inhibition of the volume- activated fluxes by NPPB was around 12 μM. [1-3]
References:
[1] Wangemann, Ph, et al. "Cl−-channel blockers in the thick ascending limb of the loop of Henle Structure activity relationship." Pflügers Archiv 407.2 (1986): S128-S141.
[2] Kirkup, A. J., G. Edwards, and A. H. Weston. "Investigation of the effects of 5‐nitro‐2‐(3‐phenylpropylamino)‐benzoic acid (NPPB) on membrane currents in rat portal vein." British journal of pharmacology 117.1 (1996): 175-183.
[3] Kirk, Kiaran, J. C. Ellory, and J. D. Young. "Transport of organic substrates via a volume-activated channel." Journal of Biological Chemistry 267.33 (1992): 23475-23478.

Protocol of NPPB

Cell experiment:

Cells are seeded in the 96-well microtiter plate at a density of 5×103 cells per well and incubated at 37°C for 24 h in a humidified 5% CO2 atmosphere. After removing the culture medium, fresh media containing various concentrations of NPPB is added, and incubated for 24 h. Next, 100 μL of Thiazolyl blue tetrazolium bromide at 0.5 mg/mL is added to each well and incubated at 37°C for 1 h. Cells are then dissolved in 100 μL of DMSO, and the absorbance is measured at 570 nm with a Microplate Reader. Concentration-response curves of NPPB are fitted to a Hill equation to obtain GI50 and GI80 (50% and 80% growth inhibition concentrations, respectively) values[2].

References:

[1]. Li J, et al. Enhancement of an outwardly rectifying chloride channel in hippocampal pyramidal neurons after cerebral ischemia. Brain Res. 2016 Aug 1;1644:107-17.
[2]. Park M, et al. Double Blockade of Glioma Cell Proliferation and Migration by Temozolomide Conjugated withNPPB, a Chloride Channel Blocker. ACS Chem Neurosci. 2016 Mar 16;7(3):275-85.

Chemical Properties of NPPB

Cas No. 107254-86-4 SDF
Synonyms HOE 144, Hoechst 144
Chemical Name 5-nitro-2-((3-phenylpropyl)amino)benzoic acid
Canonical SMILES OC(C1=CC([N+]([O-])=O)=CC=C1NCCCC2=CC=CC=C2)=O
Formula C16H16N2O4 M.Wt 300.31
Solubility ≥ 11.05mg/mL in DMSO Storage Store at -20°C
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.

Complete Stock Solution Preparation Table of NPPB

Prepare stock solution
1 mg 5 mg 10 mg
1 mM 3.3299 mL 16.6495 mL 33.2989 mL
5 mM 0.666 mL 3.3299 mL 6.6598 mL
10 mM 0.333 mL 1.6649 mL 3.3299 mL
  • Molarity Calculator

  • Dilution Calculator

  • Molecular Weight Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution) of NPPB

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Product Documents

Quality Control & SDS

View current batch:

Reviews

Review for NPPB

Average Rating: 5 ★★★★★ (Based on Reviews and 13 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for NPPB

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.