Home>>Natural Products>>FITC-Dextran (MW 10000)

FITC-Dextran (MW 10000)

Catalog No.GC36048

FITC-Dextran is a fluorescent probe for fluorescein isothiocyanate (FITC) dextran (Ex=495 nm; Em=525 nm).

Products are for research use only. Not for human use. We do not sell to patients.

FITC-Dextran (MW 10000) Chemical Structure

Cas No.: 60842-46-8

Size Price Stock Qty
5mg
$46.00
In stock
10mg
$79.00
In stock
50mg
$232.00
In stock

Tel:(909) 407-4943 Email: sales@glpbio.com

Customer Reviews

Based on customer reviews.

  • GlpBio Citations

    GlpBio Citations
  • Bioactive Compounds Premium Provider

    Bioactive Compounds Premium Provider

Sample solution is provided at 25 µL, 10mM.

Product has been cited by 1 publications

Product Documents

Quality Control & SDS

View current batch:

Protocol

Cell experiment [1]:

Cell lines

Human fibroblast

Preparation Method

Aspire the cell culture media from the cells and add 1 ml of FITC-Dextran containing medium and incubate for 3 days at 37 °C with 5% of CO2 in air.

Reaction Conditions

1mL 0.1 mg/ml FITC-Dextran for 3 days at 37 °C

Applications

When analyse the lysosomal pH in cultured cells using the fluorescent probe fluorescein isothiocyanate (FITC)-dextran together with a dual-emission ratiometric technique suitable for flow cytometry. Fluorescence-labeled dextran is endocytosed and accumulated in the lysosomal compartment. FITC shows a pH-dependent variation in fluorescence when analyzed at maximum emission wavelength and no variation when analyzing at the isosbestic point, thereby the ratio can be used to determine the lysosomal pH.

Animal experiment [2]:

Animal models

Specific-pathogen-free male C3H/HeOuJ mice

Preparation Method

The 12-week-old male mice were fasted for 6 h and 4-kDa FITC-Dextran or 70-kDa FITC-Dextran was applied orally at a single dose. Three mice each were anaesthetized after 30 min, 1, 1.5, 2 and 8 h; another three mice were anaesthetized after 15 and 45 min and blood from the retrobulbar capillary plexus was sampled into heparinized tubes for 4-kDa FITC-Dextran analyses. Plasma was obtained after centrifugation at 2000 g for 5 min.

Dosage form

600 mg/kg 4-kDa FITC dextran;(100 µL, 5 mg/mL PBS)70-kDa FITC-Dextran for 30min-8h

Applications

After 6 h of fasting in our C3H/HeOu mice, plasma concentrations of 4-kDa FITC-Dextran peaked at 45 min after oral administration.

References:

[1]: Eriksson I, Öllinger K, Appelqvist H. Analysis of Lysosomal pH by Flow Cytometry Using FITC-Dextran Loaded Cells. Methods Mol Biol. 2017;1594:179-189. doi: 10.1007/978-1-4939-6934-0_11. PMID: 28456983.
[2]: Woting A, Blaut M. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients. 2018 May 28;10(6):685. doi: 10.3390/nu10060685. PMID: 29843428; PMCID: PMC6024777.

Background

FITC-Dextran is a fluorescent probe for fluorescein isothiocyanate (FITC) dextran (Ex=495 nm; Em=525 nm). In cell permeability studies, FITC-Dextran can assess BBB permeability and BBB disruption [1,2].

When analyse the lysosomal pH in cultured cells using the fluorescent probe fluorescein isothiocyanate (FITC)-dextran together with a dual-emission ratiometric technique suitable for flow cytometry. Fluorescence-labeled dextran is endocytosed and accumulated in the lysosomal compartment. FITC shows a pH-dependent variation in fluorescence when analyzed at maximum emission wavelength and no variation when analyzing at the isosbestic point, thereby the ratio can be used to determine the lysosomal pH[2].Fitc-glucan increased intestinal epithelial paracellular permeability after 21 days of incubation[5]. When examined their expression and FITC-Dextran uptake by various human DC preparations. In contrast to immature Mo-DC, the FITC-dextran uptake by LC was not inhibited effectively by mannose, an inhibitor for MMR-mediated FITC-dextran uptake[7].

After 6 h of fasting in our C3H/HeOu mice, plasma concentrations of 4-kDa FITC-Dextran peaked at 45 min after oral administration[3]. The fluorescence of small vessels and neovascular tufts could be observed clearly following RO injection of 0.05 ml of 25 mg/ml or 50 mg/ml FITC-dextran. No visible damage to tissues adjacent to the injection site was discovered. Vitreous blood flow was gradually reduced from P0 to P5 and eventually disappeared in P17 OIR mice, as demonstrated by FITC-dextran perfusion. The retinal NV areas assessed by isolectin B4 were larger than those assessed by FITC-dextran, but the retinal avascular areas were smaller[4]. When measured fluorescence recovery after photobleaching (FRAP) of fluorescein isothiocyanate (FITC)-labelled 10 and 250 kDa dextran (FITC-Dextran) in isolated rat descending colonic crypts.FRAP of either 10 or 250 kDa FITC-Dextran in crypt lumens was almost complete within 2-3 min. In the presence of amiloride (0.1 mM), or in the absence of Na+, the rate of FITC-Dextran uptake into the crypt lumens was reduced by 70-80 %[6].

References:
[1]: Natarajan R, Northrop N, et,al. Fluorescein Isothiocyanate (FITC)-Dextran Extravasation as a Measure of Blood-Brain Barrier Permeability. Curr Protoc Neurosci. 2017 Apr 10;79:9.58.1-9.58.15. doi: 10.1002/cpns.25. PMID: 28398646; PMCID: PMC5470084.
[2]: Eriksson I, Öllinger K, et,al.Analysis of Lysosomal pH by Flow Cytometry Using FITC-Dextran Loaded Cells. Methods Mol Biol. 2017;1594:179-189. doi: 10.1007/978-1-4939-6934-0_11. PMID: 28456983.
[3]: Woting A, Blaut M. Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients. 2018 May 28;10(6):685. doi: 10.3390/nu10060685. PMID: 29843428; PMCID: PMC6024777.
[4]: Li J, Wu Y, et,al. Retro-orbital injection of FITC-dextran combined with isolectin B4 in assessing the retinal neovascularization defect. BMC Ophthalmol. 2021 May 11;21(1):208. doi: 10.1186/s12886-021-01969-5. PMID: 33975571; PMCID: PMC8112026.
[5]: Sun X, Yang Q, et,al.AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ. 2017 May;24(5):819-831. doi: 10.1038/cdd.2017.14. Epub 2017 Feb 24. PMID: 28234358; PMCID: PMC5423107.
[6]: Thiagarajah JR, Pedley KC, et,al. Evidence of amiloride-sensitive fluid absorption in rat descending colonic crypts from fluorescence recovery of FITC-labelled dextran after photobleaching. J Physiol. 2001 Oct 15;536(Pt 2):541-53. doi: 10.1111/j.1469-7793.2001.0541c.xd. PMID: 11600688; PMCID: PMC2278881.
[7]: Kato M, Neil TK,et,al. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int Immunol. 2000 Nov;12(11):1511-9. doi: 10.1093/intimm/12.11.1511. PMID: 11058570.

Chemical Properties

Cas No. 60842-46-8 SDF
Canonical SMILES [FITC-Dextran]
Formula M.Wt 10000.00(Average)
Solubility Water: 50 mg/mL Storage 4°C,sealed storage,away from moisture and light
General tips Please select the appropriate solvent to prepare the stock solution according to the solubility of the product in different solvents; once the solution is prepared, please store it in separate packages to avoid product failure caused by repeated freezing and thawing.Storage method and period of the stock solution: When stored at -80°C, please use it within 6 months; when stored at -20°C, please use it within 1 month.
To increase solubility, heat the tube to 37°C and then oscillate in an ultrasonic bath for some time.
Shipping Condition Evaluation sample solution: shipped with blue ice. All other sizes available: with RT, or with Blue Ice upon request.
  • Molarity Calculator

  • Dilution Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
**When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and MSDS / CoA (available online).

Calculate

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such as vortex, ultrasound or hot water bath can be used to aid dissolving.
3. All of the above co-solvents are available for purchase on the GlpBio website.

Related Video

    FITC-Dextran (MW 10000)-GlpBio

Reviews

Review for FITC-Dextran (MW 10000)

Average Rating: 5 ★★★★★ (Based on Reviews and 3 reference(s) in Google Scholar.)

5 Star
100%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%
Review for FITC-Dextran (MW 10000)

GLPBIO products are for RESEARCH USE ONLY. Please make sure your review or question is research based.

Required fields are marked with *

You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.